
A Uniform Approach

for Compile�Time and Run�Time Specialization

Charles Consel� Luke Hornof� Fran�cois No�el� Jacques Noy�e� Nicolae Volanschi

Universit�e de Rennes � Irisa
Campus Universitaire de Beaulieu

����� Rennes Cedex� France
fconsel� hornof� fnoel� noye� volanskig�irisa�fr

Abstract� As partial evaluation gets more mature� it is now possible to
use this program transformation technique to tackle realistic languages
and real�size application programs	 However� this evolution raises a num�
ber of critical issues that need to be addressed before the approach be�
comes truly practical	

First of all� most existing partial evaluators have been developed based
on the assumption that they could process any kind of application pro�
gram	 This attempt to develop universal partial evaluators does not ad�
dress some critical needs of real�size application programs	 Furthermore�
as partial evaluators treat richer and richer languages� their size and com�
plexity increase drastically	 This increasing complexity revealed the need
to enhance design principles	 Finally� exclusively specializing programs
at compile time seriously limits the applicability of partial evaluation
since a large class of invariants in real�size programs are not known until
run time and therefore cannot be taken into account	

In this paper� we propose design principles and techniques to deal with
each of these issues	

By de
ning an architecture for a partial evaluator and its essential com�
ponents� we are able to tackle a rich language like C without compro�
mising the design and the structure of the resulting implementation	

By designing a partial evaluator targeted towards a speci
c application
area� namely system software� we have developed a system capable of
treating realistic programs	

Because our approach to designing a partial evaluator clearly separates
preprocessing and processing aspects� we are able to introduce run�time
specialization in our partial evaluation system as a new way of exploiting
information produced by the preprocessing phase	

� Introduction

Partial evaluation is reaching a level of maturity which makes this program
transformation technique capable of tackling realistic languages and real�size
application programs� However� this evolution raises a number of critical issues
which need to be addressed before the approach becomes truly practical�



Universality vs� Adequacy� Until now� most partial evaluators have always been
developed based on the assumption that they could process any kind of appli�
cation programs� They were considered universal partial evaluators� As partial
evaluation addresses more realistic programs� it also faces new challenges when
it tackles existing real�size application programs� This new situation makes it
obvious that the usual� general�purpose set of transformations available in tradi�
tional partial evaluators falls short of addressing some critical needs of realistic
programs�

As a consequence� not only does a partial evaluator need to o�er an extensible
set of transformations� but the transformations themselves should be developed
based on program patterns found in typical applications programs in a given
area�

Need for Design Principles� Furthermore� as partial evaluators treat richer and
richer languages� their size and complexity increase drastically� Indeed� programs
written in realistic languages like C expose a very wide variety of situations
where partial evaluation can be applied� As a result� there is now a clear need
to propose design principles to structure the added complexity of the resulting
partial evaluators�

Compile�Time Specialization is Limiting� When studying components from real
software systems� it becomes apparent that exclusively specializing programs at
compile time is limiting� In fact� there exist numerous invariants that are not
known until run time and can yet be used for extensive specialization� This
situation occurs� for example� when a set of procedures implements session�
oriented transactions� When a session is opened� many pieces of information are
known� but only at run time� They could be used to specialize the procedures
which perform the actual transactions� Then� when the session is closed� the
invariants would become invalid� therefore the specialized procedures can be
eliminated�

Although run�time specialization seems to involve techniques di�erent from
compile�time specialization� both forms of specialization are conceptually the
same� They should thus be modeled by a unique approach rather than studied
separately� Also� when considering realistic languages� the level of e�ort required
to develop a specializer is such that pursuing some uniformity to handle both
cases of specialization is critical�

In this paper we present a partial evaluator of C programs� called Tempo�� It
is based on a general approach capable of handling programs written in a wide
variety of languages which spans from the C programming language �in the case
of Tempo� to a pure� higher�order dialect of Scheme �in the case of Schism 	
� ����

� The name Tempo has been previously used for a pedagogical programming language
to study binding times and parameter passing concepts ����	



A Uniform Approach� This approach is o��line in that it separates the partial
evaluation process into two parts preprocessing and processing 	��� ���� The for�
mer part mainly includes a binding�time analysis aimed at determining the static
and dynamic computations for a given program and a division �static�dynamic�
of its input� Binding�time information is subsequently used by another analysis
to assign a specialization action �i�e�� program transformation� to each construct
in the program 	���

The latter part �i�e�� processing� performs the specialization for a given
action�analyzed program and specialization values� Specialization is then merely
guided by the information produced by the preprocessing part� In many re�
gards� this design is very similar to the one used to implement programming
languages� For a given program� just like a compiler produces machine instruc�
tions� the preprocessing phase produces program transformations� Just like a
run�time system executes compiled code� the processing phase �i�e�� the spe�
cializer� executes the program transformations produced by the preprocessing
phase� Just like a compiled code is run many times with respect to di�erent in�
put values� a preprocessed program can be specialized many times with respect
to di�erent specialization values� Because specialization has been compiled� it
is performed very e�ciently� Because of the separation between preprocessing
and processing� the latter can be implemented in a di�erent language from the
former� and thereby facilitate the implementation�More importantly� this design
allows one to process action�analyzed programs in many di�erent ways� Indeed�
in order to perform compile�time specialization� actions can either be interpreted�
or even compiled� The latter form of specialization corresponds to producing a
generating extension 	��� ���

Compile�time and Run�time Specialization� More interestingly� actions can be
used as a basis to perform run�time specialization� Indeed� actions directly model
the shape of residual programs since they express how each construct in a pro�
gram is to be transformed� In fact� we have developed a strategy to perform
run�time specialization based on actions 	���� In essence� an action�annotated
program is used to generate automatically source templates at compile time�
Then� at run time the compiled templates are selected and �lled with run�time
values before being executed� This new approach has many advantages it is gen�
eral since it is based on a general approach to developing partial evaluators� it
is portable because most of the specialization process is performed at the source
level� and it is e�cient in that specialization is amortized in a few runs of the
specialized code�

An important aspect of our approach is that the preprocessing of a program
is identical whether it is specialized at compile time or at run time� This is a
direct consequence of the kind of information computed in the preprocessing
part of the system�

Adequacy� Tempo has been targeted toward a particular area� namely system
applications� More precisely� the features of Tempo have been guided by pro�
gram patterns based on actual studies of numerous system programs and tight



collaboration with system researchers� As a result� the accuracy of critical analy�
ses such as alias analysis and binding�time analysis are adequate for typical sys�
tem programs� Also� the program transformations address the important cases
in systems programs�

More globally� this new approach to the design of a partial evaluator has
had an important consequence� It clearly showed the need for module�oriented

partial evaluation� Traditional partial evaluators assume they process a complete
program� However� system programs are large enough to reach the limit of what
a state of the art analysis� such as an alias analysis� can process 	���� We have
therefore developed support to enable one to specialize pieces of a large system�

Summary� This paper makes a series of contributions regarding the design and
architecture of a partial evaluator for a real language� applied to real programs�
These contributions are as follows�

�� We present an architecture for partial evaluators which is powerful enough
to be used for realistic languages and real�size application programs�

�� This architecture has been used to develop a partial evaluator of C programs�
Unlike most existing systems� our partial evaluator has been carefully de�
signed to address speci�c specialization opportunities found in a particular
area� namely� system applications� This strategy allows us to better ensure
the applicability of partial evaluation�

�� Although dedicated to a particular application area� the architecture is
nonetheless open new program transformations can easily be introduced
at the action analysis level�

�� Last but not least� our architecture has proved its generality in that it al�
lows one to perform both compile�time and run�time specialization� As a
consequence� this generalized new form of specialization drastically widens
the scope of applicability of partial evaluation�

Outline� In Sect� � we explain the preprocessing phase� followed by the di�er�
ent processing phases in Sect� �� Section � then discusses the applications we
consider� Related work is addressed in Sect� �� and �nally we give concluding
remarks in Sect� �

� Preprocessing

As shown in Fig� �� the preprocessing part consists of four main phases� It even�
tually produces transformation operations that must be performed to specialize
the subject program�

��� Front�End

This phase transforms a C program into a C abstract syntax tree �AST�� We have
not written a new parser but have rather reused SUIF components 	���� SUIF is



Front�end

�
� �

�

�
��

�

�
��

�

�
� �

�

�
� �

�

�
�

�
�

�
� �

�
�
�

�
� �

�
�
�

�

�

�

�

�

�

�

�

H
H

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�
�

��

�

�

AST

C text

Alias and
Side�e�ect Analysis

PROCESSING

Actions

AST

AST

AST Linking Info�
Templates and

C binary

Binding�time Analysis

Action Analysis

Template Analysis

C text

PREPROCESSING

Postprocessing

Compile�time Specializer

Run�time Specializer
Generator

Fig� �� A General View of Tempo



a testbed system for experimenting with program optimizations in the context
of scienti�c code and parallel machines� Our abstract syntax is not based on the
SUIF intermediate format� which is too low�level for our purposes� but on an
intermediate representation used by a SUIF program transforming this format
back into C� With a couple of minor modi�cations to SUIF we are then able to
turn C programs into simple high�level ASTs� In particular� our abstract syntax
includes a single� do�while� loop construct� a single conditional construct� no
conditional expression� no comma expression� and no nested type declarations�

Two additional important transformations are applied to the ASTs obtained
from SUIF� Firstly� in order to allow for compositional analyses� goto statements
are eliminated as suggested by Erosa and Hendren 	�
�� Secondly� renaming
makes every identi�er unique in order to help building up a �attened static
store �see Sect� ��� This renaming also facilitates unfolding at postprocessing
time�

��� Alias and Side�e�ect Analysis

Because of the pointer facilities o�ered by the C language� an alias analysis
is critical to determine the set of aliases for each variable in a program� This
information allows the computation of binding�time properties of variables to
take into account side�e�ects� However� unlike other contexts of use of alias
analysis� partial evaluation does not require very accurate information� This
situation is essentially due to the kind of static computations that are expected
to be performed by partial evaluation� Indeed� based on our experience� static
computations rely on invariants whose validity typically follows a very clear
pattern� In fact� this is not surprising since invariant behavior must be simple
enough to be understandable� Our choice of a context�insensitive analysis is
further backed up by the study of Ruf 	��� which shows that empirical bene�ts
of a context�sensitive analysis have still to be measured�

Our analysis is very similar to 	��� and 	���� It is based on the points�to

model of aliasing� It is interprocedural� context�insensitive� and �ow�sensitive�
The analysis takes as arguments a set of procedures� a goal procedure and a
description of the initial points�to pairs� The last argument allows the analysis
of a set of procedures with respect to some alias context� This feature is critical
to enable one to only specialize parts of a large system� Assuming that programs
submitted to specialization are correct� the analysis does not separately deal
with possible and de�nite points�to pairs �see 	�� �����

The alias analysis is complemented by a side�e�ect analysis which computes
the non�local store a�ected by each procedure call as well as which procedures
are responsible for other side�e�ects like input�output�

��� Binding�Time Analysis

We have developed a binding�time analysis which annotates C programs with
their binding times� given a set of procedures� its alias and side�e�ect information�



a goal procedure� and a binding�time description of the context� This context
includes the parameters of the goal procedure and a global state�

Like the alias analysis� the design of the binding�time analysis was driven
by the typical specialization opportunities that occur in system programs� Some
of these situations are well�known in the partial evaluation community and are
addressed by standard program transformations �e�g�� reduction of primitive
applications and procedure residualization��

Other situations require new features to be introduced in the binding�time
analysis and the subsequent phases� For example� we have found that certain
types of variables� such as integers and pointers� are static in some parts of a
procedure and dynamic in others� We handle variables of these types in a �ow�
sensitive manner� giving one binding�time description per variable per program
point�

In addition� our analysis o�ers elaborate strategies to deal with pointers�
More precisely� to exploit thoroughly static information included in partially
static objects� it is critical to enable static pointers to refer both to static and�or
dynamic objects� Indeed� in the case of pointers to structures� references to its
static components should be partially evaluated away� whereas references to
its dynamic components should be residualized� This situation implies that a
single variable must be able to have two binding�time values� depending on the
program point static if used to dereference static objects� and dynamic if used
to dereference dynamic objects�

Interestingly� a similar situation occurs when a pointer may refer to more than
one memory cell� If some of these memory cells are static and others dynamic�
then the same variable should be described by two di�erent binding�time values�
Again� the pointer to the static object should be evaluated while the pointer to
the dynamic object needs to be residualized�

Previous analyses are not capable of distinguishing the di�erences between
these cases� and therefore conservatively annotate programs with the most
approximate information� For example� other binding�time analyses are �ow�
insensitive� merging information from all program points together 	�� ��� ���
Further� only one description per variable is available� which may unfortunately
residualize some static pointers to static objects 	��� One attempt to resolve
this con�ict involved splitting structures into static and dynamic parts 	��� This
does not work with module�oriented partial evaluation� since the interface of a
procedure must remain compatible with the interface of the call site�

Another important situation occurs for conditional statements� It has been
shown that when conditional statements are processed in a continuation�passing
style� the analysis can produce more accurate results 	��� ���� However this strat�
egy might cause code explosion when the test of the conditional statement is
dynamic and therefore both branches are residualized�

The analysis of conditional statements via a mixed strategy circumvents the
problem� In the case where the test is dynamic� we analyze each branch sepa�
rately� merge binding�time information at the join point� and then analyze the
continuation� On the other hand� if the test is static� then after analyzing each



branch separately we analyze the continuation twice� once assuming the true
branch will be taken and once assuming the false branch� Since the test is static�
the appropriate continuation will be chosen and the useless continuation dis�
carded at specialization time�thus avoiding code explosion�

��� Action Analysis

Once the binding�time analysis has been completed� the resulting information is
used to determine� for each construct� which specialization action �i�e�� program
transformation� to be performed� This phase comes in addition to the traditional
preprocessing phases and has many advantages

Further compilation of the specialization process� Traditionally� the specializer is
directly driven by binding�time information� The complexity of the interpreta�
tion of binding�time information depends on the complexity of the binding�time
information itself� For realistic languages like the C language� this specialization
involves interpreting detailed binding�time information of such objects as data
structures� This process can noticeably slow down the specialization phase� In
fact� this situation can be improved because binding�time information is available
prior to specialization� therefore it can be used to further compile the transfor�
mation phase�

More precise de�nition of the program transformations� De�ning specialization
actions explicitly forces the designer of the partial evaluator to precisely de�ne
the set of program transformations that is needed for a given language� Not only
does this provide better documentation to the user� but it also de�nes in detail
the semantics of the specialization phase�

Better separation between preprocessing and specialization� Because action�
analyzed programs capture the essence of the specialization process� they can
be exploited in many di�erent ways� In fact� in our partial evaluation system�
actions can be both interpreted and compiled� and used for compile�time as well
as run�time specialization� This range of applications shows the generality of the
information expressed by actions�

Specialization actions for C� Four general transformations are potentially de�
�ned for each language construct� Action reduce �abbreviated red� is assigned
to an occurrence of a language construct that can be reduced at specialization
time� For example� a conditional statement is reduced when its test expression is
static� The action rebuild �abbreviated reb� annotates a construct that needs to
be reconstructed but yet includes some static computations� Action eval �abbre�
viated ev� is assigned to an occurrence of a language construct that only consists
of purely static components� In other words� it can be completely evaluated away
at specialization time� At the other end of the spectrum there is action identity

�abbreviated id� which annotates purely dynamic program fragments�



These transformations are fundamental in the sense that they can be used
to de�ne other actions� As an example� consider the case of an explicated as�
signment� i�e�� an assignment to a variable which is at the same time static and
dynamic� The explication of such an assignment can be expressed by combining
two actions an action ev indicates that the assignment must be completely eval�
uated so that the value of the variable be available for the static computations�
another action reb expresses the fact that the assignment also has to be rebuilt so
that the variable can be included in a residual program fragment corresponding
to dynamic computations�

� Processing

There can be various back�ends to an action�analyzed program� By back�ends
we mean processing phases� They can be divided into two categories actions can
be exploited for either compile�time or run�time specialization�

��� Compile�Time Specialization

Traditionally the result of preprocessing is used for compile�time specialization�
Just like machine instructions� produced by a compiler� can be interpreted by a
simulator or directly executed by a machine� actions can either be interpreted
or compiled� Let us describe these two strategies�

Interpreting Actions� An interpreter of actions corresponds to the usual spe�
cializer� It consists of dispatching on each action of a program and executing var�
ious operations which perform this action� Because information available prior
to specialization has been extensively exploited� the specializer is simple� has a
clear structure� and is very e�cient�

Conceptually� a specializer combines a standard interpreter to perform the
static computations� and a non�standard interpreter to reconstruct program frag�
ments corresponding to the dynamic computations� Unlike standard interpreta�
tion� programs may sometimes need to be evaluated speculatively� Typically for
conditional statements with a dynamic test expression� both branches need to be
partially evaluated since the test expression is unknown at specialization time� A
mechanism is thus needed to process the branches independently of each other
they must be processed with the same initial store available before considering
the branches� This situation requires to make a copy of the store� and reinstall
it at a later stage�

One approach to address this problem is to write a specializer which includes
a complete interpreter of C programs� A drawback of this approach is the major
development e�ort that it entails due to the syntactic richness of the C language�
and also to the wide range of base types and conversion operations between them
�which are sometime machine�dependent���



Another option is to interface a specializer with an existing C interpreter�
However� existing C interpreters do not o�er a store model which supports spec�
ulative evaluation� Implementing this store copying would require the memory
of the interpreter to be tagged and would involve a costly memory traversal�

We have developed a third option which allows us to use a standard com�
piler to process the static computations� thus preserving the semantics of these
computations� The �rst part of this approach consists of �attening the scope of
the static variables of a program� Indeed� only static variables can be involved
in static computations� To do so� the idea is to rename all the variables of a pro�
gram so that they can all be global� Of course� this transformation precludes the
specialization of recursive procedures when they are partially static� However�
system programs do not exploit this language feature� A consequence of this
design is that all static data structures can be allocated contiguously and can
be easily copied to implement speculative evaluation� Furthermore� invocations
of external procedures �i�e�� procedures not processed by the specializer� can be
done easily since the store layout is compatible�

The other part of our approach consists of encapsulating purely static �ev�
fragments in C procedures� These C procedures can be directly compiled by
some standard C compiler and linked to the specializer� The specializer thus only
concentrates on the operations aimed at reconstructing program fragments� In
order to process an ev fragment� the specializer simply invokes the C procedure
which performs the corresponding computations�

The idea of using a standard compiler to perform part or all of the special�
ization process is not new� Andersen 	�� uses a similar approach in his C partial
evaluator �C�Mix� by producing generating extensions� However� his store man�
agement is more complex in that each data object is indexed by a version number
and has an �object function� that can save and restore its value� and compare
it to another copy� These operations are aimed at sharing some copies of the
same object �e�g�� a matrix� between several static stores� However� in our case�
module�oriented specialization greatly reduces the need for such optimizations�
Indeed� unlike C�Mix which requires a program to be specialized all at once�
Tempo can specialize pieces of a program separately� Furthermore� C�Mix in�
cludes a symbolic store used� for instance� when procedures are unfolded� or to
manipulate pointers to dynamic objects� In contrast� Tempo�s specializer only
includes the static C store used by ev procedures� and unfolding is done as a
postprocessing operation for compile�time specialization� This approach greatly
simpli�es the specializer and does not degrade the quality of the specialized
programs�

Notice that the store model described above is general in that it is used both
for compile�time and run�time specialization�

Compiling Actions� The natural alternative to interpreting actions is to com�
pile them� The same �run�time� system previously described for specialization
is reused� Indeed� ev fragments can still be packaged up in procedures� as for
action interpretation� and thus be directly treated by the C compiler� The main



issue when compiling actions is to compile partially static computations� i�e��
to reconstruct residual code� A simple action compiler is an almost trivial task
to achieve� as shown by Consel and Danvy 	��� A similar compilation process
is also known as generating extension 	��� �� �� ��� One di�erence is that this
latter approach is directly based on binding�time information and thus far more
complicated than an action compiler�

��� Run�Time Specialization

Not only can actions be used to specialize programs at compile time but they
can also be utilized to perform specialization at run time� In fact� run�time
specialization based on actions is just another way of exploiting this information�
Indeed� an action describes how to transform a construct and therefore it also
precisely describes the set of possible specialized programs� This set can be
formally de�ned by a tree grammar�

We have developed an abstract interpreter which produces a tree grammar
for a given action�analyzed program� As a simple example of what this analysis
produces for an action analyzed program� consider the following action tree
fragment

reb�PLUS�id�VAR��x���� ev�� � � ���

Assuming an ev fragment of type integer� our analysis then produces the tree
grammar rule shown below

L � PLUS�VAR��x��� int�

Once produced� the tree grammar is used to generate templates 	���� i�e��
source code fragments parameterized with �holes� for run�time values� The orig�
inal program is then transformed to express the various alternatives in the tree
grammar and eliminate static computations� For the above tree grammar rule�
such a transformation amounts to generating the following template �where the
��� stands for a hole�

x � �

Because this transformation is performed at the source level� it is then possi�
ble to use a standard compiler to process the templates� As a result� the quality
of the compiled templates is as good as the compiler being used� In fact� in our
implementation of the run�time specializer� the Gnu C compiler is being used�

One key feature of our approach is that specialization at run�time solely
amounts to selecting templates� �lling holes in templates with run�time values
�the � above�� and relocating jumps between templates� The simplicity of these
operations makes run�time specialization a very e�cient process which requires
specialized code to be run very few times to amortize the cost of specialization�

A complete description of our approach to run�time specialization is pre�
sented in 	����



� Applications

This section �rst discusses some generalities regarding the classes of programs
which are targeted for specialization� The support for module�oriented special�
ization is then presented� Finally� typical candidates for specialization in system
code are described�

��� Classes of Programs Targeted

In recent years� major research projects have been focusing on the design and
implementation of operating systems that are both highly�parameterized and ef�
�cient� These apparently con�icting goals have led researchers to widen the scope
of the techniques which are used in system development� More speci�cally� pro�
gramming language techniques have been introduced to perform a critical task�
namely� adapting�customizing system components with respect to given param�
eters� In this context� forms of partial evaluation have become a key technique
to develop adaptive operating systems� Examples of such projects include Spin
	��� ExoKernel 	���� Scout 	���� and Synthesis 	��� ����

To validate the applicability of Tempo we have been studying in detail various
system components� Some of this work has been done in collaboration with
operating system researchers� For example� we have been collaborating with the
Synthesis group at Oregon Graduate Institute to apply our approach to �le
system operations in the Hewlett Packard Unix system� The results of this work
are reported in an upcoming SOSP��� paper 	����

Other areas of current research include inter�process communication �IPC�
and remote procedure calls �RPC�� In particular� we have been working on frag�
ments of the Chorus operating system 	���� Our goal is to specialize the remote
procedure call layer �RPC� with respect to a given RPC stub and server�

These studies suggest the following three observations there is a need for
module�oriented specialization� control �ow specialization is important� and
there are opportunities to specialize with respect to data �ow�

��� Module�Oriented Specialization

The need for module�oriented specialization appeared obvious when examining
any system code� For example� when studying the communication system of
Chorus� it turned out that this component was too large to enable one to reason
about potential specializations� We therefore concentrated on a speci�c layer of
the protocol stack the socket level� When isolating this piece of code� we found a
great number of global static variables� some deeply embedded in partially static
structures� This situation prompted us to work on a tool capable of determining
what parts of the global state was needed for a particular piece of code� and
assist the programmer to initialize it when performing specialization�

Furthermore� when specializing an isolated piece of code� the partial evalua�
tion system still needs to reason about the unknown used pieces� More precisely�
the pieces external to the one considered have to be understood in terms of their



side e�ects� To this end� we are also developing a declaration language which
enables the programmer to specify the e�ects of external pieces�

Another consequence of studying system code is the use of a demand�driven
strategy to develop Tempo� Usually� every language feature is being dealt with
in a complete way� That is� all possible cases de�ned for a language feature are
handled� This completeness is needed since no speci�c application is targeted�
However for a language like C� this strategy amounts to being very conservative
for a number of its features� When a particular kind of programs is targeted� one
can observe that language features are seldomly used in their full generality� This
situation arises� for example� in the case of the operation setjump� which allows
programs to exit non�locally� Although this operation has a very unpredictable
e�ect on the control� it is used in a very structured way in system code� In fact�
we have characterized the program patterns corresponding to the way it is used�
and for these patterns a treatment is proposed�

��� Control Flow Specialization

System programs devote much of their time interpreting data structures� These
data structures may contain information of the system state or parameters pro�
vided by the user� Like any interpreter� these special�purpose interpreters can
be specialized with respect to a given program �here� a regular data structure��

This observation can be illustrated� for example� by the communica�
tion system we studied� There are some typical interpreting procedures� like
udp usrreq�sock� req� ����� at the UDP level� which take a user request
and dispatch to the corresponding code� There is also much argument check�
ing performed� For example� for each operation on a socket� the procedure
getsock�fdes� is called and checks whether the �le descriptor is not out of
bounds� Still� this information� available when the socket is opened� will not
change until it is closed� Run�time specialization can be used in such a situation�

In fact� interpretation is really pervasive in an operating system due to the
generality of the services it o�ers� It is common to observe that some operations
devote more than a quarter of their conditional computations to interpret user
options or parts of the system state� In this respect� this application area is ideal
for partial evaluation�

��� Data Flow Specialization

Besides the control �ow of a program� specialization can also optimize its data
�ow� In system code� links between data structures are repeatedly interpreted�
For example� the same linked list can be traversed many times� and thus� the
pointers linking the elements together are dereferenced repeatedly� Specialization
can be used in this situation to optimize the code that traverses such data struc�
tures with respect to a given instance� It will eliminate the pointer dereferencing
operations�

This idea was originally presented by Massalin 	��� and named executable

data structures� He applied this technique to the task scheduler of the Synthesis



operating system� It is a routine which is called when a task switch is needed�
To perform this task switch� the scheduler saves the registers of the outgoing
task �including the program counter�� and then � using a global circular task
queue � dereferences a pointer to the next task� loads its registers� and jumps
to its saved program counter� To obtain an e�cient task switch� prologue and
epilogue code are dynamically generated for each task� using some hand�written
templates in assembly language� This code only saves the used registers of the
old task and loads the needed registers of the new one� This optimization is
important when dealing with �oating�point registers� whose saving and restoring
time is expensive�

The same optimization can be performed using partial evaluation� The pro�
logue and epilogue routines can be derived automaticallyby specializing a generic
task scheduler with respect to a given circular task queue� Let us consider�
for simplicity� a non�preemptive scheduler expressed in some pseudo�code� This
scheduler is called by a task when it wants to give control to the system

task �crt	tsk


sched�� �

save	regs�crt	tsk�


crt	tsk�crt	tsk�next


load	regs�crt	tsk�


jmp	to�crt	tsk�PC�


�

task	����

���

sched��


���

�

It is the second command in procedure sched which is important� It deref�
erences the pointer to the next task to be activated� Data �ow specialization is
targeted towards eliminating such operations�

Once specialized with respect to a given circular list of tasks� the resulting
program is

sched	����

save�FP��
 save�FP��


load�FP��
 load�FP��


jmp��x�����


�

task	����

���

sched	���


���

�



While this example is overly simpli�ed� it still illustrates how specialization
can be applied to complex data structures that are repeatedly interpreted by
system code�

Finally� note that some situations require both control �ow and data �ow
specializations�

� Related Work

There are already a number of existing imperative partial evaluators 	��� ���
�
� �� ��� They are either on�line or o��line partial evaluators� and cover a wide
range of imperative programming languages� such as C� Pascal� and Fortran�
All of these systems are universal in the sense that they o�er general solutions�
Also� they are all global� requiring the whole program to be processed in order
to perform any optimizations� This severely limits real�size applications� Finally�
these systems are limited to compile�time optimizations� Run�time information
is ignored�

Tempo addresses these shortcomings� By considering speci�c realistic appli�
cations� we make design decisions which allow us to produce a highly e�ective
tool for certain applications� Being module�oriented� Tempo can be applied to
smaller parts of large systems� opening up many new opportunities to apply
partial evaluation� As well� including a run�time specializer allows new types of
optimizations to be performed�

Recently other forms of run�time specialization have been explored� Engler
and Proebsting�s approach involves having the programmer manually construct
templates which are then compiled into binary code at run time 	���� Leone
and Lee�s method involves postponing certain compilation operations until run
time in order to better optimize programs 	���� These approaches are error�prone
due to the need for user intervention� lose e�ciency due to the lack of global
perspective� and have not been formalized�

We have addressed each of these issues when developing the run�time spe�
cializer for Tempo� The process is automatic and formally de�ned and proven�
guaranteeing a relative degree of safety� Since it is based on the Gnu C compiler
�GCC�� we can port our run�time specializer to any architecture which supports
GCC� Finally� e�cient code can be created since the templates are all avail�
able and compiled before run time� which allows advanced optimizations to be
performed�

Current work is also being done on adaptive operating systems 	�� ��� ����
These existing approaches tend to invent new and di�erent technologies in order
to provide this adaptiveness�

In contrast� we propose reusing an existing technology� namely partial eval�
uation� to meet the demands of adaptive operating systems� Our collaboration
with Synthetix creates a synergistic e�ect where both groups bene�t from the
cross�fertilization 	���� The operating systems group identi�es where specializa�
tion can be applied� and uses the tools we provide them to perform their adaptive



specialization� By applying Tempo to systems programs� our group can continue
re�ning the tools based on the feedback we receive�

� Conclusion

We have presented an approach to designing partial evaluators for realistic lan�
guages and applied it to real�size applications� Our Tempo system is based on
a general approach which consists of separating the process into two parts a
preprocessing phase compiles� after a number of static analyses� input programs
into actions� and a processing phase which then executes these actions to per�
form the actual specialization� As we have shown� this has a number of bene�ts
and� in particular� makes it possible to integrate both compile�time and run�time
specialization within the same system�

A second key feature which distinguishes Tempo from standard partial eval�
uators is the fact that this partial evaluator was developed with a particular
domain of applications in mind� namely system code� This decision was based
on the belief that a universal partial evaluator would be too general to perform
the speci�c optimizations desired� We have accordingly opted for a bottom�up
approach which consists of studying the opportunities for specialization of spe�
ci�c applications and then making design decisions based upon these studies�

Our preliminary experiments� on operating system code� are encouraging�
They have shown that partial evaluation can indeed be used to migrate current
operating systems towards a new range of adaptive operating systems� These
early results have also brought to our attention new concepts and techniques�
like module�oriented specialization� which we found necessary to perform the
realistic program transformations we desired�

Although much remains to be done� we feel that Tempo is a signi�cant step
towards making partial evaluation a practical tool for programming in the large�

Acknowledgements

The authors would like to thank Olivier Danvy and Barbara Moura for their
comments on drafts of this paper� Thanks are also due to Sandrine Chiroko��
Julia Lawall� Anne�Fran�coise Le Meur� J�er ome Picault� Vincent Piederriere� and
Scott Thibault for their help with the implementation of Tempo�

References

	 L	O	 Andersen	 � Self�applicable C program specialization	 � In C	 Consel� editor�
ACM Workshop on Partial Evaluation and Semantics�Based Program Manipula�
tion� pages ����	 Yale University� ���	 � Research Report ���	

�	 L	O	 Andersen	 � Program Analysis and Specialization for the C Programming
Language	 � PhD thesis� DIKU� University of Copenhagen� May ���	 � DIKU
Technical Report ����	



�	 R	 Baier� R	 Gl�uck� and R	 Z�ochling	 � Partial evaluation of numerical programs
in Fortran	 � In Partial Evaluation and Semantics�Based Program Manipulation�
Orlando� Florida� June ���� �Technical Report ����� Department of Computer
Science� University of Melbourne�� pages ����� ���	

�	 B	N	 Bershad� C	 Chambers� S	 Eggers� C	 Maeda� D	 McNamee� P	 Pardyak�
S	 Savage� and E	 G�un Sirer	 � SPIN � an extensible microkernel for application�
speci
c operating system services	 � Technical Report ��������� University of
Washington� Seattle� Washington� February ���	

�	 L	 Birkedal and M	 Welinder	 � Partial evaluation of Standard ML	 � Master�s
thesis� DIKU� University of Copenhagen� ���	 � Research Report �����	

�	 D	R	 Chase� M	 Wegman� and F	 Kenneth Zadeck	 � Analysis of pointers and
structures	 � In Proceedings of the ACM SIGPLAN ��	 Conference on Program�
ming Language Design and Implementation� pages ������� June ���	 � ACM
SIGPLAN NOTICES� ������ June ��	

�	 C	 Consel	 � Polyvariant binding�time analysis for higher�order� applicative lan�
guages	 � In ACM Symposium on Partial Evaluation and Semantics�Based Pro�
gram Manipulation� pages ������ ���	

�	 C	 Consel	 � A tour of Schism� A partial evaluation system for higher�order applica�
tive languages	 � In ACM Symposium on Partial Evaluation and Semantics�Based
Program Manipulation� pages ������ ���	

�	 C	 Consel and O	 Danvy	 � From interpreting to compiling binding times	 � In
N	 D	 Jones� editor� ESOP��	� 
rd European Symposium on Programming� volume
��� of Lecture Notes in Computer Science� pages �����	 Springer�Verlag� ���	

�	 C	 Consel and O	 Danvy	 � For a better support of static data �ow	 � In
J	 Hughes� editor� Functional Programming Languages and Computer Architecture�
Cambridge� Massachusetts� August ���� �Lecture Notes in Computer Science� vol�
�
�� pages ������	 ACM� Springer�Verlag� ��	

	 C	 Consel and O	 Danvy	 � Tutorial notes on partial evaluation	 � In ACM Sym�
posium on Principles of Programming Languages� pages ������� ���	

�	 C	 Consel and F	 No�el	 � A general approach for run�time specialization and its ap�
plication to C	 � In Proceedings of the 
rd ACM SIGPLAN�SIGACT Symposium
on Principles Of Programming Languages� ���	 � To appear	

�	 C	 Consel� C	 Pu� and J	 Walpole	 � Incremental specialization� The key to high
performance� modularity and portability in operating systems	 � In ACM Sym�
posium on Partial Evaluation and Semantics�Based Program Manipulation� pages
������ ���	 � Invited paper	

�	 C	 Consel� C	 Pu� and J	 Walpole	 � Making production OS kernel adaptive� Incre�
mental specialization in practice	 � Technical report� Oregon Graduate Institute�
Portland� Oregon� ���	

�	 M	 Emami� R	 Ghiya� and L	J	 Hendren	 � Context�sensitive interprocedural
points�to analysis in the presence of function pointers	 � In Proceedings of the
ACM SIGPLAN ��� Conference on Programming Language Design and Imple�
mentation� pages �������	 ACM Press� June ���	 � ACM SIGPLAN NOTICES�
������ June ��	

�	 D	 R	 Engler and T	 A	 Proebsting	 � DCG� An e�cient� retargetable dynamic
code generation system	 � In Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems �ASP�
LOS VI�	 ACM Press� November ���	

�	 D	R	 Engler� M	F	 Kaashoek� and J	W	 O�Toole	 � Exokernel� An operating system
architecture for application�level resource management	 � In Proceedings of the



ACM Symposium on Operating Systems Principles� ���	 � To appear	
�	 A	M	 Erosa and L	J	 Hendren	 � Taming control �ow� A structured approach

to eliminating goto statements	 � In Proceedings of the IEEE ���� International
Conference on Computer Languages� May ���	

�	 A	P	 Ershov	 � On the essence of translation	 � Computer Software and System
Programming� ������������� ���	

��	 N	 D	 Jones� P	 Sestoft� and H	 S�ndergaard	 � Mix� a self�applicable partial eval�
uator for experiments in compiler generation	 � Lisp and Symbolic Computation�
��������� ���	

�	 N	D	 Jones� Carsten Gomard� and Peter Sestoft	 � Partial Evaluation and Auto�
matic Program Generation	 � Prentice Hall International� International Series in
Computer Science� June ���	

��	 N	D	 Jones and S	S	 Muchnick	 � TEMPO� A Uni�ed Treatment of Binding Time
and Parameter Passing Concepts in Programming Languages �Lecture Notes in
Computer Science� vol� ���	 � Springer�Verlag� ���	

��	 D	 Keppel� S	 Eggers� and R	 Henry	 � Evaluating runtime compiled value�speci
c
optimizations	 � Technical Report ������� University of Washington� Seattle�
Washington� ���	

��	 P	 Lee and M	 Leone	 � Lightweight run�time code generation	 � In ACM Work�
shop on Partial Evaluation and Semantics�Based Program Manipulation� pages
������ ���	

��	 U	 Meyer	 � Techniques for partial evaluation of imperative languages	 � In Partial
Evaluation and Semantics�Based Program Manipulation� New Haven� Connecticut
�ACM SIGPLAN NOTICES� ����� September ������ pages ������ ��	

��	 A	B	 Montz� D	 Mosberger� S	W	 O�Malley� L	L	 Peterson� T	A	 Proebsting� and
J	H	 Hartman	 � Scout� A communications�oriented operating system	 � Technical
Report ������ The University of Arizona� Tucson� Arizona� ���	

��	 F	 Nielson	 � A denotational framework for data �ow analysis	 � Acta Informatica�
������������� ���	

��	 V	 Nirkhe and W	 Pugh	 � Partial evaluation and high�level imperative program�
ming languages with applications in hard real�time systems	 � In Nineteenth ACM
Symposium on Principles of Programming Languages� Albuquerque� New Mexico�
January ���� pages �������	 ACM� ���	

��	 C	 Pu� T	 Autrey� A	 Black� C	 Consel� C	 Cowan� J	 Inouye� L	 Kethana�
J	 Walpole� and K	 Zhang	 � Optimistic incremental specialization� Streamlin�
ing a commercial operating system	 � In Proceedings of the ACM Symposium on
Operating Systems Principles� ���	 � To appear	

��	 C	 Pu� H	 Massalin� and J	 Ioannidis	 � The Synthesis kernel	 � Computing Sys�
tems� ������� Winter ���	

�	 M	 Rozier� V	 Abrassimov� F	 Armand� M	 Gien� M	 Guillemont� F	 Herrman�
C	 Kaiser� S	 Langlois� P	 L�eonard� and W	 Neuhauser	 � Overview of the Chorus
distributed operating system	 � In Workshop on Micro�kernels and Other Kernel
Architectures� pages �����	 USENIX� May ���	

��	 E	 Ruf	 � Context�insensitive alias analysis reconsidered	 � In Proceedings of the
ACM SIGPLAN ��� Conference on Programming Language Design and Implemen�
tation� pages ����� June ���	 � ACM SIGPLAN NOTICES� ������ June ���	

��	 R	P	 Wilson� R	S	 French� C	S	 Wilson� S	P	 Amarasinghe� J	M	 Anderson� S	W	K	
Tjiang� S	�W	 Liao� C	�W	 Tseng� M	W	 Hall� M	S	 Lam� and J	L	 Hennessy	 �
SUIF� An infrastructure for research on parallelizing and optimizing compilers	 �
ACM SIGPLAN NOTICES� ����������� December ��	



��	 R	P	 Wilson and Lam	 M	S	 � E�cient context�sensitive pointer analysis of C
programs	 � In Proceedings of the ACM SIGPLAN ��� Conference on Programming
Language Design and Implementation� pages ��	 ACM Press� June ���	 � ACM
SIGPLAN NOTICES� ������ June ���	

This article was processed using the LaTEX macro package with LLNCS style


