
Safe Operating System Specialization: the RPC Case Study�Eugen-Nicolae Volanschi & Gilles Muller & Charles ConselIrisa/Inria,Campus de Beaulieu,F-35042 Rennes Cedex, FranceE-mail: fvolanski,muller,conselg@irisa.frAbstractAdaptive operating systems allow one to optimize systemfunctionalities with respect to common situations. Wepresent an experiment aimed at optimizing the RPC imple-mentation in Chorus by manual specialization. We showthat there exist numerous opportunities for specializationand that they can lead to great improvements. Then, wediscuss how this optimization can be reproduced automati-cally with a specializer for C programs.1 IntroductionServices o�ered by operating systems are, by nature, gen-eral. As new applications and hardware platforms emerge,this increasing generality penalizes performance. This con-
ict between generality and performance is at the basis ofseveral research projects which are aimed at designing op-erating systems which can adapt to usage patterns to treatcommon cases e�ciently [6, 9, 1, 7]. This adaptation ismainly based on customizing/specializing operating systemcalls with respect to some contextual information.To achieve this adaptation a few important issues mustbe addressed: (1) how can code be adapted? (2) how canthe adapted code be trusted by the kernel? (3) how shouldthe adapted code be incorporated in the kernel?This paper explores these issues in the context of Re-mote Procedure Calls (RPC) in Chorus/ClassiX. We de-scribe how aspects of protocol layers can be adapted to ex-ploit a usage pattern. This adaption is achieved by apply-ing systematically specialization techniques. Performancemeasurements of the specialized fragments demonstrate thatthis approach produces major improvements (on these frag-ments).After brie
y presenting a specializer for C programs,named Tempo [4], we also discuss how this optimization onRPC could be done automatically using Tempo.�This research is supported in part by France Telecom/SEPT,ARPA grant N00014-94-1-0845, and NSF grant CCR-92243375.

2 Specializing Operating SystemsTrusting optimized code. An important requirement whenimporting code in an operating system is to ensure that itcan be trusted. Let us examine how this requirement is ad-dressed by the three main approaches to adaptive operatingsystems. In Synthesis [11], adaptation relies on templateswritten by the programmer. As a consequence, the special-ized code may be unsafe. In the SPIN operating system [1],extensions are written in a strongly-typed language; thismakes it possible to ensure some degree of safety. Othersafety aspects are handled at run time using predicates onthe code. In the context of RPC, this run-time approachis used by Thekkath et al. [12] to ensure the safety of theoptimized code. This is achieved by a mechanism similar topacket �ltering.In contrast, we propose to optimize system componentsby specializing the existing code. Like any optimizer, if it issemantic preserving the specializer will produce optimizedcode that can be trusted (if the non-specialized one is). Thisapproach has already been applied to the HP-UX �le systemas reported by Pu et al. [10]. In this work, the notion ofoptimistic specialization is introduced. That is, at run time,when invariants become valid, they are used to specializespeci�c code fragments. If the invariants are invalidated,the specialized fragments are removed and the general ver-sions are reinstalled. In a more advanced strategy, wheninvalidation occurs, fragments specialized with respect toother invariants should be reinstalled.Importing optimized code. Specializing parts of an operat-ing system requires the specialized parts to be incorporated(statically or dynamically) into the operating system. Since,the address space of the kernel is limited, it is important tokeep the specialized code within the application as a libraryof optimized routines. This code should run with supervi-sor privileges to allow it to exploit data from the kernel.For safety reasons, access from the application to this codeshould be restricted, even if it lies in the same address space.To do so, an approach proposed by Muller and Bryce con-sists of de�ning several domains of protection (DP) [2] withinthe application. This insures both protection and scalabil-ity. The specialized code is placed in a DP supervisor, andonly previously declared entry points allow the applicationprogram to exploit this code. In the implementation, a DPcall is de�ned as a system trap which takes an entry pointspeci�cation within this restricted set. All other functioncalls in the DP are accessible only within the DP itself.

Sockets

recvfrom()

recvit()

sendto()

soreceive()

DP-IOM

sendit()

sosend()

RPC stub

iomsendto()

UDP

IP

Ethernet

Interface controller

Application

minimum()
clntudp_call()

iomrecvfrom

Figure 1: The protocol stack underlying the RPC implemen-tation. The grayed part indicates the code fragment whichhas been specialized.3 The RPC Case StudyOur study is concerned with the specialization of part of theRPC in Chorus/ClassiX. The stack of protocols to be opti-mized in presented in Figure 1. For the interface compiler,rpcgen is used | Sun's RPC stub generator. The underly-ing communication primitives used by rpcgen are those ofa BSD socket. As an example of an RPC service, we de�nea procedure which calculates the minimum of two numbers.3.1 Manual SpecializationIn the RPC case, the system routines for message passingare used to implement a particular client/server interface.This situation o�ers several opportunities for specialization.Main invariants. First, in the automatically generatedstubs, part of the communication con�guration is �xed (e.g.,whether the protocol is connection oriented). In our study,because the underlying protocol is UDP, a socket is non-blocking and datagram, and the send operation is atomic.Also, the stub contains calls to the send routine (sendto())where some
ags are constant.Second, a given client/server interface may �x the size ofmessages for a service call. This situation occurs when theservice requires a �xed number of arguments of a �xed size.Knowing the size of the messages, their packing routinescan be unfolded; also, the size of the kernel bu�er can becomputed statically and its allocation can be optimized.Another opportunity corresponds to the location of theserver which may be �xed during some period of time. Aslong as the server does not migrate, its location does notneed to be re-computed, nor does it need to be copied inkernel space at every socket operation.Last, for modularity reasons, each layer of the protocolstack is written independently of the adjacent layers. Fora �xed stack of layers, some functions can be unfolded andthe copy of some parameters can be avoided.Exploiting invariants. We have specialized the fragmentof the protocol stack between the application down to the

Original Specialized SpeedupSocket level 43.75 11.90 72.8%(emission only)Stub to socket 109 74 32.1%(emission only)Table 1: Performance comparison. Times are given in �s.Both versions execute the specialized code in a DP supervi-sor within the application itself.socket level. Only the sending side (Fig. 1) has been ad-dressed.The sendit() routine is unfolded in sendto() interme-diate data structure is eliminated. The kernel bu�er for thereceiver's address is allocated and initialized when the clientis created rather for each send. The invariants mentionedabove make it possible to eliminate many tests in the socketlayer. The size of the packet being known (48 bytes), theXDR packing routines are rewritten without any functioncall. The pre-initialization of the XDR header is extendedto the RPC header (service number, credentials). In the op-timized version only the arguments have to be packed foreach call.Performance We measured the speedup of the manuallyspecialized version on two Pentium 90 PC's running Cho-rus/ClassiX, connected by a 10M-bit/s Ethernet network.The timings are given in Table 1.As can be noticed the speedup at the socket level forthe send operation is over 70% (the time was measured byreplacing the call to inferior layers by an immediate return).The importance of this gain decreases to about 30% whenconsidering all the specialized layers (stub to socket). Thisis because the time spent in the stub and in the DP-IOMlevels has not changed, except for 3�s which comes from theoptimized packing function for the arguments.4 Automatic SpecializationThe speedup obtained by manual specialization clearlydemonstrates that this optimization technique is promising.We are currently developing a specialization system forC programs, named Tempo [4]. Advanced features are beingincorporated to process system code. This new system willallow us to reproduce automatically the optimization of theRPC.4.1 The Tempo PlatformTempo is a partial evaluator. It takes a source programwritten in C and parts of its input, and produces a special-ized version. Tempo is an o�-line partial evaluator [3, 8] inthat it processes a program in two steps: during the �rstphase only a known/unknown division of the input is given.The program is analyzed and a transformation is associatedwith each program construct. The result of the �rst phasecan either be used for compile-time or run-time specializa-tion. In the former case, a concrete value is given for eachknown input at compile time, and the program is special-ized at compile time as well. In the latter case, the concretevalues only become known at run time, and specialization

relies on a strategy based on templates [5]. In both cases,the specialization process is guided by the transformationsgenerated by the �rst phase.The input to the �rst phase is given in a binding-timecontext �le. The values for the second phase are given ina specialization context �le. A third �le de�nes the initialalias context.The analysis phase handles partially-static structures (inwhich only some but not all the �elds are known). It alsotreats pointers to partially-static data; they are handled in adual way: they are both dereferenced during specializationand residualized in the specialized program. We will referto them as explicated pointers.4.2 A Systematic ApproachWe are describing here a systematic way to apply our spe-cialization tool to system code. This description focuses onthe comparison between what can be done manually andthe corresponding automatic transformations. In this con-text, an important issue is concerned with classifying the in-variants. Another issue is to identify additional mechanismsneeded when specializing only a part of a large system, bothat specialization time and at run time.Categories of InvariantsIn this paper an invariant is de�ned as a variable having aconstant value during some period of time.Invariants are said to be compile time if they are knownprior to run time and they are valid throughout the exe-cution of the program. Quasi-invariants are compile timeif they are known prior to run time but can change duringexecution.Invariants are said to be run time if they are notknown prior to run time and cannot be invalidated. Quasi-invariants are run-time if they are not known until run timebut can be invalidated during the execution.Interestingly, we can sometime use compile-time special-ization for runtime invariants, when the set of possible valuesof a variable is known prior to execution, and this set is smallenough (e.g., boolean variables). Then, we can perform acompile-time specialization for each possible value, and relyon a run-time mechanism to select between several versions.The reason why compile-time specialization is used when-ever possible is e�ciency: no overhead for specializing thecode is required during run time. Even though Tempo o�ersan e�cient run-time specializer.Let us now describe some classes of invariants which fre-quently appear in operating system code. We start withthose which can be used for compile-time specialization:Compile-Time SpecializationTight coupling of software components. Modules allowsome functionalities of a system to be added or re-placed. However, when the coupling of modules is�xed, they can be optimized by specialization. In ourRPC study, the IP layer can support both UDP andTCP, but only UDP is used. This situation allows us,for example, to eliminate retransmission bu�ers.Options as invariants. In our study, options can be usedfor compile-time specialization, even if their value isnot known before runtime. As described previously,

it su�ces to select commonly occuring values to per-form specialization. This is simple in the case ofsome options where possible values are well-de�ned.As an example, in the context of sockets, the
agSO DONTROUTE varies during a send, but can betreated as a quasi-invariant.Constants in the text. They can occur in several situations.First, there are elements of a static con�guration (e.g.,the size of a bu�er or of an Ethernet packet). Then,some library functions are written in a generic way butmost of the time they are used in a speci�c way. Forinstance, the function may take a vector of strings,but is often invoked with a vector of size one. Thisis the case for uiomove() which copies memory, andsendit() which can send a whole iovec. Third, con-stants can come from functionalities which are not im-plemented. For example, structure �elds reserved forfuture use (the access rights of a message, in RPC).Here we see that there are many opportunities forcompile-time specialization, besides the obvious constantsintroduced by #define.Let us now examine cases of run-time specialization.Run-Time SpecializationSession-oriented invariants. Invariants are often createdwhen a session is opened (e.g., opening a �le or a con-nection). Then, a system data structure is allocatedto record various pieces of information. Parts of theinformation are repeatedly interpreted and yet do notchange for the duration of the session or for a long pe-riod. For instance, during a TCP session, the serveraddress cannot change. In the RPC case, the identityof the server may change, although this situation doesnot occur frequently.Manual specialization exploits the server address in-variant by \lifting" the code which allocates and ini-tializes the address from the sending routine to theclient creation routine. This code motion correspondsto run-time specialization in that, during object cre-ation the sending function is specialized with respectto the server's address. This specialization involvesexecuting the \static" parts of send, including the ad-dress allocation and initialization. So, code motion isdone in a transparent way by the specializer.Isolating The Code To Be SpecializedNow that the possible invariants have been identi�ed, we ex-amine what pieces of code should be specialized with respectto these invariants.Tempo allows one to specialize an isolated part of a pro-gram. Any collection of functions may be selected, providedthe right \context" for specialization is speci�ed. For largeprograms, this may be non-trivial. In the RPC case, thecontext of the send routines is constructed by the socket cre-ation routines (socreate(), bind()) called when the clientis created. This context includes a great number of nestedstructures, which are partially static and contain pointers toeach other. Supplying the context involves �nding out which�elds are static, determining their values, and specifying theinitial aliases.

For the specialization values, we are investigating a sys-tematic approach where program parts not involved in thespecialization can be executed to construct the specializa-tion context and then collect the static parts of the state.This state-extracting function might be written by the userof Tempo, or (semi-)automatically generated based on somedeclarations.Also, a few functions need to be supplied to simulate, atspecialization time, the run-time behavior of some externalfunctions which otherwise could not be called statically. Anexample is getsock(fd), which takes a �le number | notknown until runtime | and returns a partially-static �ledescriptor.Predicting speedup Once we have chosen the invariantsand the piece of code to specialize, we might be interested inhaving an estimate of the speedup, based on the cost of staticcomputations which will be evaluated away. Having a toolfor this could avoid generating many di�erent specializedkernels and then running benchmarks on each of them. Evena rough estimate of the speedup would be helpful.Runtime support We already saw that the code can be spe-cialized at compile-time with respect to several interestingvalues. But also, it might be specialized with respect todi�erent binding-time contexts. For example, we can havea server interface which o�ers a service that takes a list ofarguments; here, the size of the messages will not be known,but we still want to have an optimized sendto() which ex-ploits all the other invariants. Therefore, the correct codeto be invoked depends either on values or on binding-times.In our example however, almost all the invariants are trueinvariants. The main exception is the address of the remoteserver, which can sometimes change. In this case, we mustmodify its number in the packet headers. Additionally, ifthe new server runs on a di�erent architecture, we mustmodify the packing routines for scalar types, used duringmarshaling.For the runtime support, we will use the technique ofguards and re-plugging presented by Pu et al. [10].Comparison When comparing manual and automatic spe-cialization, there are a number of di�erences to consider.For instance, when sendit() passes to sosend() the ad-dress of struct uio auio, manual specialization will passonly the dynamic part of this partially-static structure,namely the content of the message | the embedded structiovec. The Tempo version will still pass &auio as an ex-plicated pointer. The same di�erence occurs when a par-tially static structure is copied in an unstructured way, withbcopy() for example. In the �rst case, not much is lost (thecost of an indirection), but in the second case Tempo needsto be extended. We are currently investigating some auto-matic solutions for treating simple situations of unstructuredcopying, since this occurs frequently in the code.Other di�erences come from the fact that Tempois an o�-line partial evaluator, even for compile-timespecialization, where all the static values are known.For instance, manual specialization will consider the ex-pression (flags & MSG DONTROUTE) && (so->so options &SO DONTROUTE) == 0 as False if the corresponding
ag isknown to be 0, but Tempo will consider it dynamic, be-cause of the unknown so options. This loss of accuracy

will eventually be circumvented by a CPS analysis of condi-tionals.5 ConclusionsThis paper explores opportunities to apply specializationtechniques to system code. In particular, we study the op-timization of protocol layers. We show that great speedupcan be obtained using this approach. Then, we discuss howthis process can be automated using a specializer for C pro-grams.AcknowledgmentsWe want to thank Fr�ed�eric Maz�e for his important contribu-tion to the manual specialization, and Luke Hornof for histhorough comments on drafts of this paper.References[1] B. Bershad, C. Chambers, S. Eggers, C. Maeda, D. Mc-Namee, P. Pardyak, S. Savage, and E. G�un Sirer. SPIN{ an extensible microkernel for application-speci�c op-erating system services. Technical Report 94-03-03,University of Washington, Seattle, Washington, Febru-ary 1994.[2] C. Bryce and G. Muller. Matching micro-kernels tomodern applications using �ne-grained memory protec-tion. In Procedings of the seventh IEEE Symposium onParallel and Distributed Processing, pages 272{279, SanAntonio (Tx), Oct. 1995.[3] C. Consel and O. Danvy. Tutorial notes on partial eval-uation. In Twentieth ACM Symposium on Principles ofProgramming Languages, Charleston, South Carolina,January 1993, pages 493{501. ACM, ACM, 1993.[4] C. Consel, L. Hornof, F. No�el, J. Noy�e, and E.-N. Volan-schi. A uniform approach for compile-time and run-timespecialization. Publication interne 979, Irisa, Rennes,France, Dec. 1995. To appear in the Proceedings of theSeminar on Partial Evaluation, Dagstuhl, 1996.[5] C. Consel and F. No�el. A general approach for run-timespecialization and its application to C. In Proceedings ofthe 23rd Annual ACM SIGPLAN-SIGACT Symposiumon Principles Of Programming Languages, St. Peters-burg Beach, Florida, USA, Jan. 1996. ACM Press.[6] C. Consel, C. Pu, and J. Walpole. Incremental partialevaluation: The key to high performance, modularity,and portability in operating systems. In ACM Sympo-sium on Partial Evaluation and Semantics-Based Pro-gram Manipulation, pages 44{46, Copenhagen, 1993.[7] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exok-ernel: An operating system architecture for application-level resource management. In Proceedings of the Fif-teenth Symposium on Operating Systems Principles,1995.[8] N. D. Jones, C. Gomard, and P. Sestoft. Partial Eval-uation and Automatic Program Generation. PrenticeHall International, International Series in ComputerScience, June 1993. ISBN number 0-13-020249-5 (pbk).

[9] A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Pe-terson, T. A. Proebsting, and J. H. Hartman. Scout:A communications-oriented operating system. Techni-cal Report TR-94-20, University of Arizona, Tucson,Arizona, 1994.[10] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,J. Inouye, L. Kethana, J. Walpole, and K. Zhang.Optimistic incremental specialization: Streamlining acommercial operating system. In Proceedings of the15th ACM Symposium on Operating Systems Princi-ples, 1995.[11] C. Pu, H. Massalin, and J. Ioannidis. The Synthesiskernel. Computing Systems, 1(1):11{32, Winter 1988.[12] Thekkath, Lazowska, Nguyen, and Moy. Implementingnetwork protocols at user lvel. Technical Report TR93-03-01, University of Washington, 03 1993.

