Safe Operating System Specialization: the RPC Case Study

*

Eugen-Nicolae Volanschi & Gilles Muller & Charles Consel

IrR1SA /INRIA,
Campus de Beaulieu,
F-35042 Rennes Cedex, France
E-mail: {volanski,muller,consel}@irisa.fr

Abstract

Adaptive operating systems allow one to optimize system
functionalities with respect to common situations. We
present an experiment aimed at optimizing the RPC imple-
mentation in CHORUS by manual specialization. We show
that there exist numerous opportunities for specialization
and that they can lead to great improvements. Then, we
discuss how this optimization can be reproduced automati-
cally with a specializer for C programs.

1 Introduction

Services offered by operating systems are, by nature, gen-
eral. As new applications and hardware platforms emerge,
this increasing generality penalizes performance. This con-
flict between generality and performance is at the basis of
several research projects which are aimed at designing op-
erating systems which can adapt to usage patterns to treat
common cases efficiently [6, 9, 1, 7]. This adaptation is
mainly based on customizing/specializing operating system
calls with respect to some contextual information.

To achieve this adaptation a few important issues must
be addressed: (1) how can code be adapted? (2) how can
the adapted code be trusted by the kernel? (3) how should
the adapted code be incorporated in the kernel?

This paper explores these issues in the context of Re-
mote Procedure Calls (RPC) in CHORUS/ClassiX. We de-
scribe how aspects of protocol layers can be adapted to ex-
ploit a usage pattern. This adaption is achieved by apply-
ing systematically specialization techniques. Performance
measurements of the specialized fragments demonstrate that
this approach produces major improvements (on these frag-
ments).

After briefly presenting a specializer for C programs,
named Tempo [4], we also discuss how this optimization on
RPC could be done automatically using Tempo.

*This research is supported in part by France Telecom/SEPT,
ARPA grant N00014-94-1-0845, and NSF grant CCR-92243375.

2 Specializing Operating Systems

Trusting optimized code. An important requirement when
importing code in an operating system is to ensure that it
can be trusted. Let us examine how this requirement is ad-
dressed by the three main approaches to adaptive operating
systems. In Synthesis [11], adaptation relies on templates
written by the programmer. As a consequence, the special-
ized code may be unsafe. In the SPIN operating system [1],
extensions are written in a strongly-typed language; this
makes it possible to ensure some degree of safety. Other
safety aspects are handled at run time using predicates on
the code. In the context of RPC, this run-time approach
is used by Thekkath et al. [12] to ensure the safety of the
optimized code. This is achieved by a mechanism similar to
packet filtering.

In contrast, we propose to optimize system components
by specializing the existing code. Like any optimizer, if it is
semantic preserving the specializer will produce optimized
code that can be trusted (if the non-specialized one is). This
approach has already been applied to the HP-UX file system
as reported by Pu et al. [10]. In this work, the notion of
optimistic specialization is introduced. That is, at run time,
when invariants become valid, they are used to specialize
specific code fragments. If the invariants are invalidated,
the specialized fragments are removed and the general ver-
sions are reinstalled. In a more advanced strategy, when
invalidation occurs, fragments specialized with respect to
other invariants should be reinstalled.

Importing optimized code. Specializing parts of an operat-
ing system requires the specialized parts to be incorporated
(statically or dynamically) into the operating system. Since,
the address space of the kernel is limited, it is important to
keep the specialized code within the application as a library
of optimized routines. This code should run with supervi-
sor privileges to allow it to exploit data from the kernel.
For safety reasons, access from the application to this code
should be restricted, even if it lies in the same address space.
To do so, an approach proposed by Muller and Bryce con-
sists of defining several domains of protection (DP) [2] within
the application. This insures both protection and scalabil-
ity. The specialized code is placed in a DP supervisor, and
only previously declared entry points allow the application
program to exploit this code. In the implementation, a DP
call is defined as a system trap which takes an entry point
specification within this restricted set. All other function
calls in the DP are accessible only within the DP itself.

Application

minimum()

cintudp._call() RPC stub
jomsendto() | iomrecvfrom| DP-IOM
sendto() recvfrom()
sendit() recvit() Sockets
sosend() sor eceive()

UDP

1P

Ethernet

Interface controller

Figure 1: The protocol stack underlying the RPC implemen-
tation. The grayed part indicates the code fragment which
has been specialized.

3 The RPC Case Study

Our study 1s concerned with the specialization of part of the
RPC in Chorus/ClassiX. The stack of protocols to be opti-
mized in presented in Figure 1. For the interface compiler,
rpcgen is used — Sun’s RPC stub generator. The underly-
ing communication primitives used by rpcgen are those of
a BSD socket. As an example of an RPC service, we define
a procedure which calculates the minimum of two numbers.

3.1 Manual Specialization

In the RPC case, the system routines for message passing
are used to implement a particular client/server interface.
This situation offers several opportunities for specialization.

Main invariants. First, in the automatically generated
stubs, part of the communication configuration is fixed (e.g.,
whether the protocol is connection oriented). In our study,
because the underlying protocol is UDP, a socket is non-
blocking and datagram, and the send operation is atomic.
Also, the stub contains calls to the send routine (sendto())
where some flags are constant.

Second, a given client/server interface may fix the size of
messages for a service call. This situation occurs when the
service requires a fixed number of arguments of a fixed size.
Knowing the size of the messages, their packing routines
can be unfolded; also, the size of the kernel buffer can be
computed statically and its allocation can be optimized.

Another opportunity corresponds to the location of the
server which may be fixed during some period of time. As
long as the server does not migrate, its location does not
need to be re-computed, nor does it need to be copied in
kernel space at every socket operation.

Last, for modularity reasons, each layer of the protocol
stack is written independently of the adjacent layers. For
a fixed stack of layers, some functions can be unfolded and
the copy of some parameters can be avoided.

Exploiting invariants. We have specialized the fragment
of the protocol stack between the application down to the

| [[Original | Specialized | Speedup |

Socket level 43.75 11.90 72.8%
(emission only)
Stub to socket 109 74 32.1%
(emission only)

Table 1: Performance comparison. Times are given in ps.
Both versions execute the specialized code in a DP supervi-
sor within the application itself.

socket level. Only the sending side (Fig. 1) has been ad-
dressed.

The sendit () routine is unfolded in sendto() interme-
diate data structure is eliminated. The kernel buffer for the
receiver’s address is allocated and initialized when the client
is created rather for each send. The invariants mentioned
above make it possible to eliminate many tests in the socket
layer. The size of the packet being known (48 bytes), the
XDR packing routines are rewritten without any function
call. The pre-initialization of the XDR header is extended
to the RPC header (service number, credentials). In the op-
timized version only the arguments have to be packed for
each call.

Performance We measured the speedup of the manually
specialized version on two Pentium 90 PC’s running CHO-
RUS/ClassiX, connected by a 10M-bit/s Ethernet network.
The timings are given in Table 1.

As can be noticed the speedup at the socket level for
the send operation is over 70% (the time was measured by
replacing the call to inferior layers by an immediate return).
The importance of this gain decreases to about 30% when
considering all the specialized layers (stub to socket). This
is because the time spent in the stub and in the DP-IOM
levels has not changed, except for 3us which comes from the
optimized packing function for the arguments.

4 Automatic Specialization

The speedup obtained by manual specialization clearly
demonstrates that this optimization technique is promising.

We are currently developing a specialization system for
C programs, named Tempo [4]. Advanced features are being
incorporated to process system code. This new system will
allow us to reproduce automatically the optimization of the

RPC.

4.1 The Tempo Platform

Tempo is a partial evaluator. It takes a source program
written in C and parts of its input, and produces a special-
ized version. Tempo is an off-line partial evaluator [3, 8] in
that it processes a program in two steps: during the first
phase only a known/unknown division of the input is given.
The program is analyzed and a transformation is associated
with each program construct. The result of the first phase
can either be used for compile-time or run-time specializa-
tion. In the former case, a concrete value is given for each
known input at compile time, and the program is special-
ized at compile time as well. In the latter case, the concrete
values only become known at run time, and specialization

relies on a strategy based on templates [5]. In both cases,
the specialization process is guided by the transformations
generated by the first phase.

The input to the first phase is given in a binding-time
context file. The values for the second phase are given in
a spectalization context file. A third file defines the initial
alias context.

The analysis phase handles partially-static structures (in
which only some but not all the fields are known). It also
treats pointers to partially-static data; they are handled in a
dual way: they are both dereferenced during specialization
and residualized in the specialized program. We will refer
to them as explicated pointers.

4.2 A Systematic Approach

We are describing here a systematic way to apply our spe-
cialization tool to system code. This description focuses on
the comparison between what can be done manually and
the corresponding automatic transformations. In this con-
text, an important issue is concerned with classifying the in-
variants. Another issue is to identify additional mechanisms
needed when specializing only a part of a large system, both
at specialization time and at run time.

Categories of Invariants

In this paper an ¢nvariant is defined as a variable having a
constant value during some period of time.

Invariants are said to be compile time if they are known
prior to run time and they are valid throughout the exe-
cution of the program. Quasi-invariants are compile time
if they are known prior to run time but can change during
execution.

Invariants are said to be run time if they are not
known prior to run time and cannot be invalidated. Quasi-
invariants are run-time if they are not known until run time
but can be invalidated during the execution.

Interestingly, we can sometime use compile-time special-
ization for runtime invariants, when the set of possible values
of a variable is known prior to execution, and this set is small
enough (e.g., boolean variables). Then, we can perform a
compile-time specialization for each possible value, and rely
on a run-time mechanism to select between several versions.
The reason why compile-time specialization is used when-
ever possible is efficiency: no overhead for specializing the
code is required during run time. Even though Tempo offers
an efficient run-time specializer.

Let us now describe some classes of invariants which fre-
quently appear in operating system code. We start with
those which can be used for compile-time specialization:

Compile-Time Specialization

Tight coupling of software components. Modules allow
some functionalities of a system to be added or re-
placed. However, when the coupling of modules is
fixed, they can be optimized by specialization. In our
RPC study, the IP layer can support both UDP and
TCP, but only UDP is used. This situation allows us,
for example, to eliminate retransmission buffers.

Options as invariants. In our study, options can be used
for compile-time specialization, even if their value is
not known before runtime. As described previously,

it suffices to select commonly occuring values to per-
form specialization. This is simple in the case of
some options where possible values are well-defined.
As an example, in the context of sockets, the flag
SO_DONTROUTE varies during a send, but can be

treated as a quasi-invariant.

Constants in the text. They can occur in several situations.
First, there are elements of a static configuration (e.g.,
the size of a buffer or of an Ethernet packet). Then,
some library functions are written in a generic way but
most of the time they are used in a specific way. For
instance, the function may take a vector of strings,
but is often invoked with a vector of size one. This
is the case for uiomove () which copies memory, and
sendit () which can send a whole iovec. Third, con-
stants can come from functionalities which are not im-
plemented. For example, structure fields reserved for
future use (the access rights of a message, in RPC).

Here we see that there are many opportunities for
compile-time specialization, besides the obvious constants
introduced by #define.

Let us now examine cases of run-time specialization.

Run-Time Specialization

Session-oriented invariants. Invariants are often created
when a session is opened (e.g., opening a file or a con-
nection). Then, a system data structure is allocated
to record various pieces of information. Parts of the
information are repeatedly interpreted and yet do not
change for the duration of the session or for a long pe-
riod. For instance, during a TCP session, the server
address cannot change. In the RPC case, the identity
of the server may change, although this situation does
not occur frequently.

Manual specialization exploits the server address in-
variant by “lifting” the code which allocates and ini-
tializes the address from the sending routine to the
client creation routine. This code motion corresponds
to run-time specialization in that, during object cre-
ation the sending function is specialized with respect
to the server’s address. This specialization involves
executing the “static” parts of send, including the ad-
dress allocation and initialization. So, code motion is
done in a transparent way by the specializer.

Isolating The Code To Be Specialized

Now that the possible invariants have been identified, we ex-
amine what pieces of code should be specialized with respect
to these invariants.

Tempo allows one to specialize an isolated part of a pro-
gram. Any collection of functions may be selected, provided
the right “context” for specialization is specified. For large
programs, this may be non-trivial. In the RPC case, the
context of the send routines is constructed by the socket cre-
ation routines (socreate(), bind()) called when the client
is created. This context includes a great number of nested
structures, which are partially static and contain pointers to
each other. Supplying the context involves finding out which
fields are static, determining their values, and specifying the
initial aliases.

For the specialization values, we are investigating a sys-
tematic approach where program parts not involved in the
specialization can be executed to construct the specializa-
tion context and then collect the static parts of the state.
This state-extracting function might be written by the user
of Tempo, or (semi-)automatically generated based on some
declarations.

Also, a few functions need to be supplied to simulate, at
specialization time, the run-time behavior of some external
functions which otherwise could not be called statically. An

example is getsock(£d), which takes a file number — not
known until runtime — and returns a partially-static file
descriptor.

Predicting speedup Once we have chosen the invariants
and the piece of code to specialize, we might be interested in
having an estimate of the speedup, based on the cost of static
computations which will be evaluated away. Having a tool
for this could avoid generating many different specialized
kernels and then running benchmarks on each of them. Even
a rough estimate of the speedup would be helpful.

Runtime support We already saw that the code can be spe-
cialized at compile-time with respect to several interesting
values. But also, it might be specialized with respect to
different binding-time contexts. For example, we can have
a server interface which offers a service that takes a list of
arguments; here, the size of the messages will not be known,
but we still want to have an optimized sendto() which ex-
ploits all the other invariants. Therefore, the correct code
to be invoked depends either on values or on binding-times.
In our example however, almost all the invariants are true
invariants. The main exception is the address of the remote
server, which can sometimes change. In this case, we must
modify its number in the packet headers. Additionally, if
the new server runs on a different architecture, we must
modify the packing routines for scalar types, used during
marshaling.

For the runtime support, we will use the technique of
guards and re-plugging presented by Pu et al. [10].

Comparison When comparing manual and automatic spe-
cialization, there are a number of differences to consider.

For instance, when sendit () passes to sosend() the ad-
dress of struct uio auio, manual specialization will pass
only the dynamic part of this partially-static structure,
namely the content of the message — the embedded struct
iovec. The Tempo version will still pass &auio as an ex-
plicated pointer. The same difference occurs when a par-
tially static structure is copied in an unstructured way, with
bcopy () for example. In the first case, not much is lost (the
cost of an indirection), but in the second case Tempo needs
to be extended. We are currently investigating some auto-
matic solutions for treating simple situations of unstructured
copying, since this occurs frequently in the code.

Other differences come from the fact that Tempo
is an off-line partial evaluator, even for compile-time
specialization, where all the static wvalues are known.
For instance, manual specialization will consider the ex-
pression (flags & MSG_DONTROUTE) && (so->so_options &
SO_DONTROUTE) == 0 as False if the corresponding flag is
known to be 0, but Tempo will consider it dynamic, be-
cause of the unknown so_options. This loss of accuracy

will eventually be circumvented by a CPS analysis of condi-
tionals.

5 Conclusions

This paper explores opportunities to apply specialization
techniques to system code. In particular, we study the op-
timization of protocol layers. We show that great speedup
can be obtained using this approach. Then, we discuss how
this process can be automated using a specializer for C pro-
grams.

Acknowledgments

We want to thank Frédéric Mazé for his important contribu-
tion to the manual specialization, and Luke Hornof for his
thorough comments on drafts of this paper.

References

[1] B. Bershad, C. Chambers, S. Eggers, C. Maeda, D. Mc-
Namee, P. Pardyak, S. Savage, and E. Giun Sirer. SPIN
— an extensible microkernel for application-specific op-
erating system services. Technical Report 94-03-03,
University of Washington, Seattle, Washington, Febru-
ary 1994.

[2] C. Bryce and G. Muller. Matching micro-kernels to
modern applications using fine-grained memory protec-
tion. In Procedings of the seventh IEFE Symposium on
Parallel and Distributed Processing, pages 272-279, San
Antonio (Tx), Oct. 1995.

[3] C. Consel and O. Danvy. Tutorial notes on partial eval-
uation. In Twentieth ACM Symposium on Principles of
Programming Languages, Charleston, South Carolina,
January 1993, pages 493-501. ACM, ACM, 1993.

[4] C. Consel, L. Hornof, F. Noél, J. Noyé¢, and E.-N. Volan-
schi. A uniform approach for compile-time and run-time
specialization. Publication interne 979, Irisa, Rennes,
France, Dec. 1995. To appear in the Proceedings of the
Seminar on Partial Evaluation, Dagstuhl, 1996.

[5] C. Consel and F. Noél. A general approach for run-time
specialization and its application to C. In Proceedings of
the 23" Annual ACM SIGPLAN-SIGACT Symposium
on Principles Of Programming Languages, St. Peters-
burg Beach, Florida, USA, Jan. 1996. ACM Press.

[6] C. Consel, C. Pu, and J. Walpole. Incremental partial
evaluation: The key to high performance, modularity,
and portability in operating systems. In ACM Sympo-
stum on Partial Fvaluation and Semantics- Based Pro-
gram Manipulation, pages 44—46, Copenhagen, 1993.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-
teenth Symposium on Operating Systems Principles,
1995.

[8] N. D. Jones, C. Gomard, and P. Sestoft. Partial Eval-
uation and Automatic Program Generation. Prentice
Hall International, International Series in Computer
Science, June 1993. ISBN number 0-13-020249-5 (pbk).

[9]

[10]

[11]

[12]

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L.. Pe-
terson, T. A. Proebsting, and J. H. Hartman. Scout:
A communications-oriented operating system. Techni-
cal Report TR-94-20, University of Arizona, Tucson,
Arizona, 1994.

C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.
Optimistic incremental specialization: Streamlining a
commercial operating system. In Proceedings of the
15th ACM Symposium on Operating Systems Princi-
ples, 1995.

C. Pu, H. Massalin, and J. Ioannidis. The Synthesis
kernel. Computing Systems, 1(1):11-32, Winter 1988.

Thekkath, Lazowska, Nguyen, and Moy. Implementing
network protocols at user lvel. Technical Report TR
93-03-01, University of Washington, 03 1993.

