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Abstract

For many programmers, the notion of “pattern matching” evokes nothing
more than regular expressions for matching unstructured text, or technolo-
gies such as XPath to match semi-structured data in XML. This common
perception of pattern matching is partly due to the success of regular ex-
pressions and XPath, which are supported in many popular programming
languages today, either as standard libraries or as part of the language. But
it is also due to the fact that many programmers never used another elegant
form of pattern matching—on structured data, i.e., the native data structures
of a programming language. This form of matching is common in functional
or logic languages used in research, but unfortunately much less used in the
software industry. It is indeed very surprising that none of the popular lan-
guages in use today support, in their standard form, a nearly general form of
structured data matching, decades after this technology has been discovered
and continuously improved.

This paper shows that programmers do not have to wait for next gener-
ation languages to integrate pattern matching, neither need they use non-
standard pre-processors, thereby losing some advantages that are most im-
portant in an industrial setting: official support, compatibility, standard-
ization, etc. Instead, pattern matching of native data in custom notations
can be implemented as a minimalist library in popular object languages.
Thus, some of the comfortable existing notations from logic languages can
be reused, existing standard notations for structured data such as JSON
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(JavaScript Object Notation) can be smoothly extended to support pattern
matching, and new notations can be designed.

As in most library implementations of regular expressions, custom nota-
tion patterns are simply represented as strings. They can be used in two dif-
ferent modes: interpreted and compiled. This paper presents two open-source
implementations of custom matching notations, for Java and JavaScript, ex-
hibiting a reasonable overhead compared to other forms of pattern matching.

Keywords: pattern matching, data notations, customization

1. Introduction

Various programming languages allow pattern matching in suitable nota-
tions for particular data structures, such as terms in ML, lists in Prolog, bit
strings in Erlang, etc. The long experience of the programming communities
of these languages can attest that matching in these notations can be very
convenient and may help in writing more elegant programs. In spite of this
long-standing and strong evidence, pattern matching has not yet found its
way, through mainstream languages, to the wide majority of programmers.

Ideally, any general-purpose programming language, including mainstream
languages, should predefine some of these convenient notations for data struc-
tures, leveraging the long practice of different existing languages. Addition-
ally, programmers should be able to easily add their own notations for match-
ing both legacy and newly developed data structures, all this without giving
up the use of standard tools. Moreover, the notations of various program-
mers for distinct datatypes should be composable with each other, and also
with the predefined notations.

Many solutions have been proposed for extending imperative program-
ming languages such as Java with the pattern matching of general data struc-
tures [12, 8, 16, 17]. These fully working systems definitely prove that pattern
matching can be integrated within imperative languages, including some of
their more advanced features such as: type safety, checks for exhaustiveness
or overlapping, and matching optimizations. However, all these unofficial
extensions of standard languages are implemented by a pre-processor or a
non-standard compiler. Unfortunately, this is a considerable barrier for their
widespread adoption in many production projects, because (1) some projects
cannot rely on non-standard compiler chains, and (2) pre-processors tend to
make debugging more complex. If pattern matching could be implemented
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without any language extension, even leaving out some of its advanced fea-
tures mentioned above, this could significantly widen its adoption in the
industry. Actually, it has already been proved that pattern matching can
be implemented as a pure library (e.g., in Java [27]), but in that approach,
patterns are a special kind of native objects, which means that the syntax for
patterns is the host language syntax for building objects; as a consequence,
pattern syntaxes inspired from other languages, such as Prolog lists or Erlang
bit strings, cannot be implemented in this approach.

Another line of work in the literature studies the integration of concrete
syntax pattern matching in a host programming language [2, 27]. One of
the most general results [26] allows one to integrate an arbitrary context-free
“object” language into an arbitrary context-free host programming language.
However, this approach is aimed at providing pattern matching for manipu-
lating abstract syntax trees of the object language. Therefore, the concrete
syntax approach is extremely useful for designing compilers and program
transformation tools, but does not address the matching of arbitrary native
objects in a program such as arrays, lists, circular queues, and so on. Besides,
this result is also based on building a form of pre-processor that transforms
a host+object program into a pure host program.

Thus, none of these two lines of work allow programmers to use pattern
matching in concrete syntax on native data objects, while remaining in a
100% standard development environment. Besides, as these approaches do
not discuss pattern matching between a string pattern written in an arbitrary
syntax, and an arbitrary data object, this notion of string/object pattern
matching has yet to be precisely defined.

This paper defines a general concept of matching notations in customized
syntaxes. To ensure that such notations are freely composable, we take a
pragmatic option which is to parenthesize most sub-patterns. By carefully
choosing the parenthesizing technique, existing well-known notations such as
JSON (JavaScript Object Notation) [10] and Prolog lists can be smoothly
generalized to matching notations, with zero syntactic overhead. By making
another pragmatic choice, which is to represent custom patterns as ordinary
strings, we show that this concept of matching notations can be very eas-
ily implemented in mainstream languages such as Java and JavaScript as
a minimalist library, with no extension of the host language. Representing
patterns as strings also has the effect of giving up static type checks and
static analyses such as pattern exhaustivity or pattern overlapping, but we
argue that this shorthand is largely compensated for by providing pattern
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matching features in mainstream languages in the first place, especially in
user-defined syntax.

Matching notations fit particularly well within the object paradigm: a
predefined notation can be implemented as a single method at the level of a
generic object in the class hierarchy, and can be redefined by more specialized
classes, by simply overriding this method.

Pattern matching in custom notations is intended to recognize data items
that are native to a programming language, such as integers, strings, struc-
tures, objects, lists, etc., and at the same time to decompose them into
smaller data items. For instance, the following statement, using one of our
pre-defined matching notations, is meant to both recognize a red-black tree
t having a particular form—a black root and a red left sub-tree—and de-
compose it into smaller items by binding pattern variables to some sub-items
(the left sub-tree’s value and own sub-trees, and the root tree’s value and
right sub-tree)1:

s = match(t, ’{color:"black", left:{color:"red", value:%,

left:%, right:%},

value:%, right:%}’);

if(s) return (s[3] > s[0] + 10)? s[4]: s[2];

As can be seen, the retrieved values can then be used in the code.
This predefined notation can be overridden with a custom notation by

any programmer. Then, the same data structure might be recognized and
decomposed using a completely different pattern, e.g.,

s = match(d, "[(% % %) % %]")

in which the color of a tree is compactly encoded in the kind of surrounding
parentheses, and its components are encoded in a fixed order: left sub-tree,
value, and right-subtree.

The main contributions of this paper can be summarized as follows:

• it defines a generic concept of matching notations in custom syntaxes
and some important properties such as composability and ambiguity

1The patterns in this and other examples have been formatted using whitespace for
better readability.
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• it shows that this concept can be implemented very concisely, and
with reasonable overhead, in two mainstream object languages, thereby
bringing not only pattern matching, but matching in custom notations,
to most programmers.

This paper is organized as follows. Section 2 defines the notion of match-
ing notations and the related notions of pattern composition, and studies
some properties and variations of these. Section 3 shows how the general
concept of notations can be implemented very naturally within an object-
oriented setting, in two quite different object languages: Java and JavaScript.
Section 4 situates the current work in the perspective of other related ap-
proaches, and Section 5 presents some ideas of future improvements and
concludes by discussing the potential impact of this technology.

2. Matching Notations

Traditionally, pattern matching of structured data is defined between
two trees: some data represented by a ground first-order term and a pattern
represented as a first-order term including variables. This classic notion of
tree matching can be directly used for matching abstract syntax trees (ASTs).
For the particular case of concrete syntax pattern matching, the pattern is
represented as text, but parsed to an AST; thus, concrete syntax matching
is also reduced to the previous classic case of tree matching. Extensions of
tree matching exist to deal with matching between two termgraphs [19].

This section defines a notion of pattern matching between a textual pat-
tern, written in some arbitrary syntax, and any kind of data structure in a
program. This form of matching:

• defines deterministic composition of different notations nested in the
same pattern, which is useful when matching some complex data at
once;

• is compatible with data encapsulation, which is essential when inte-
grating it within object-oriented languages;

• allows decomposing the same data in several ways along different pat-
terns, which is needed by pattern languages such as Prolog’s list pat-
terns or Erlang’s bit string patterns.

5



In terms of practical advantages, as will be shown in section 3, this definition
of matching integrates well with an object-oriented language, by allowing to
implement a notation for a class in a single method of that class; in partic-
ular, this enables easy overriding of a notation on subclasses. This single
method can be implemented either as a straightforward pattern interpreter,
or, for more efficiency, as a staged function, taking a pattern and returning a
matching function specialized for the given pattern. Finally, no modification
of the user class is needed, other than the one-method overriding, so matching
behavior can be easily added in legacy programs with minimal intrusion.

2.1. Patterns

The purpose of a matching notation is to recognize and decompose data
structures using patterns. As these operations heavily depend on the type of
the data structure, a matching notation is always defined in relation to a type
T ⊂ D, where D represents the set of all data expressible in a programming
language.

The most important ingredient of a matching notation is a pattern lan-
guage, that is, a language over a finite alphabet of symbols augmented with
a special “variable” symbol: LT ⊂ (A⊎{%})∗, where ⊎ denotes the union of
disjoint sets. Any word in this language p ∈ LT is called a pattern. We note
|p| ≥ 0 the number of variables in a pattern p.

The first role of a pattern is to recognize some particular data structures
in T . In our framework, this is done by a filter function associating each
pattern with a subset of the datatype FT (p) ⊆ T , called the domain of
pattern p. A pattern p is defined on data d ∈ T if d ∈ FT (p).

The second role of a pattern is to deconstruct data in T in some of its
constituents. In our framework, this is done by a deconstructor function DT

associating each pattern with a tuple of projections of the data in T , one
for each pattern variable: DT (p) = 〈. . . ρi, . . .〉1≤i≤|p|, where ρi : FT (p) → Ti,
where Ti ⊂ D are other arbitrary types, corresponding to the data com-
ponents, or “sub-data”, in which T can be decomposed using the pattern p.
Applying a pattern p to data d means applying the corresponding projections
to d, that is, p(d) =

〈

ρ1(d), . . . ρ|p|(d)
〉

.
Summarizing, a notation for a type T is a triple NT = 〈LT , FT , DT 〉,

where LT is a pattern language, FT is a filter function mapping each pattern
to its domain, and DT is a deconstructor function mapping each pattern to
a list of projections.
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A notation may be conveniently represented as a set of deconstructor-
domain pairs, noted DT (p) : FT (p) (read the colon as “defined on”), where
the deconstructor is written in “concrete syntax”: the pattern p in which any
variable has been substituted with the corresponding projection: p[ρi/%i]
(where %i denotes the i-th variable in pattern p). For instance, the pattern
p = (% + %i) together with the deconstructor DT (p) = 〈ρ1, ρ2〉 and the
domain FT (p) = {d | ρ2(d) 6= 0} can be written in concise form (ρ1 + ρ2i) :
{d | ρ2(d) 6= 0}. If the domain of some pattern is the whole type T , we can
simply omit the domain and the preceding colon.

Example 1. The following is a possible notation for lists:

• (∀n ≥ 0) ρ1, . . . , ρn : {d | length(d) = n}

where ρi represents the projection selecting the i-th element from a list.

Note that the universal quantifier and the ellipsis are not part of the no-
tation, but of the meta-language: they are merely a shorthand for enumer-
ating a set of several patterns. Here, the shorthand represents the patterns
ǫ : {d | length(d) = 0}, where ǫ is also part of the meta-language and repre-
sents the empty string, ρ1 : {d | length(d) = 1}, ρ1, ρ2 : {d | length(d) = 2},
and so on. According to the associated domains, the first pattern is defined
on empty lists; as it contains no variable, applying it to any empty lists gives
the empty tuple. The second pattern, which in its non-substituted form is
written %, is defined on lists of one element; its only variable is associated
to the projection ρ1, so its application to a singleton list returns its only
element. The third pattern, %, %, is defined on lists of two elements; its
variables are associated to projections ρ1 and ρ2 respectively, so its applica-
tion to a two-element list returns the tuple of those elements, etc. In general,
each pattern decomposes a list of a fixed length into the tuple of its elements.

Example 2. Consider a record datatype for complex numbers, having two
floating point fields, “re” and “im”. The usual notation from mathematics
can be defined very easily on this type as:

• ρre + ρimi

• ρre : {d | ρim(d) = 0}

where ρre(d) = d.re and ρim(d) = d.im.
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Note that we note d.re the value of field “re” of the record d. The first
pattern, %+%i, is defined on any complex number, since there is no domain,
and decomposes it into its real and imaginary parts, since the first variable
is associated to the real projection and the second one to the imaginary
projection. The second pattern, %, is only defined on the subset of real
numbers, and its application simply returns their value.

Data d ∈ T is said to match a pattern p ∈ LT if p is defined on d:
matchT (d, p) ⇔ p ∈ LT ∧d ∈ FT (p). The deconstruction of the data obtained
by applying the pattern to it, p(d), is called the result of the match.

2.2. Composing patterns

Given a pattern p ∈ LT , a pattern composition is an expression of the

form ̂p[pi/%i]i∈I⊂[1..|p|], in which some of the variables in p are marked to
be substituted with patterns for the corresponding sub-data pi ∈ LTi

. By
performing all the marked substitutions we obtain a composed pattern, noted
p[pi/%i]i∈I⊂[1..|p|]. Thus, we distinguish between the pattern composition ex-
pression, which can be thought of as a tree of depth one rooted at p and
having pi as kids, and the resulting composed pattern, which is a word in the
language obtained by composing LT with the languages LTi

. The pattern
composition is noted with an extra hat on top, to suggest its tree structure.

The application of a pattern composition to some data d is defined as:

̂p[pi/%i]i∈I⊂[1..|p|](d) = t1(d) · . . . · t|p|(d))

where “·” denotes tuple concatenation, and:

ti(d) =

{

〈ρi(d)〉 if i 6∈ I

pi(ρi(d)) if i ∈ I

That is, the data is first deconstructed using the top-level pattern, then
using the sub-patterns, if any, and all the resulting tuples are concatenated
to obtain a single tuple. Note that this definition consistently extends the
definition of the application of a flat pattern, because when I = ∅, i.e., when
no composition is done, the former definition reduces to the latter definition.

The match between some data d ∈ T and a pattern composition can be
defined as:

matchT (d, ̂p[pi/%i]i∈I⊂[1..|p|]) ⇔ p ∈ LT ∧ d ∈ FT (p) ∧
∧

i∈I

matchTi
(ρi(d), pi)
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The result of the match is the application of the pattern composition to d.
The application and matching were defined between some data and a pat-

tern composition—a tree of nested patterns. In order to perform matching
between some data and a composed pattern—a word in the composed pat-
tern language—, the pattern has to be recognized as the result of a pattern
composition, as defined by the following equation:

matchT (d, p) ⇔ p = p′[pi/%i]i∈I⊂[1..|p′|] ∧ matchT (d, ̂p′[pi/%i]i∈I) (1)

and the result of the match is ̂p′[pi/%i]i∈I(d).
Note that according to these definitions, a pattern composition has only

one level of pattern nesting; this can be extended to any finite number of
nesting in the obvious way. The language obtained by a finite number of
compositions starting from LT is noted LT .

2.3. Pattern ambiguity

Actually, equation (1) may admit several solutions, when the composed
pattern p may result from several pattern compositions. For instance, if we
consider the list notation previously defined and we try to write a pattern
for a list of lists of some elements, where the outer list has two elements,
and where each of the two inner lists contains exactly one element, we have
to express this as the pattern p = %, %, which results from the composition
p′[%/%1, %/%2] where p′ = %, %. But this pattern can also represent lists
containing a single inner list of length two, that is the result of the compo-
sition p′′[%, %/%1] where p′′ = %. In other words, the language obtained by
composing the above list pattern language with itself is ambiguous.

There is nothing fundamentally wrong with allowing ambiguous pattern
languages; matching such an ambiguous pattern may succeed in different
ways, producing different results. However, this implies handling several re-
sulting tuples of variable size, which involves a more complicated user inter-
face. Also, recognizers for ambiguous languages may be less efficient than for
unambiguous languages. For these reasons, we will impose some constraints
for avoiding pattern ambiguity.

One possible way to ensure that pattern composition is unambiguous, is
to cast this problem in a classical parsing setting, by requiring for instance
that any of the languages LTi

be described by a unambiguous context-free
grammar. Once this is assumed, existing results about grammar composition
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may be used to impose further restrictions on the individual pattern gram-
mars guaranteeing that the resulting composed grammar for language LT is
unambiguous.

In the following, we will impose a common and very simple constraint to
the individual pattern languages, rather than on their grammars; actually, we
do not even assume they are generated by a grammar. The constraint is to use
parenthesized notations languages, i.e., notations whose patterns always start
with an opening parenthesis (k∈ O and always ends with a corresponding
closing parenthesis )k ∈ C, where O ∩ C = ∅, and (O ∪ C) ∩ (A ∪ {%}) = ∅.
Any pattern language LT ⊂ (A ⊎ {%})∗ can be trivially transformed to a
parenthesized language L′

T ⊂ (A⊎{%}⊎O⊎C)∗ by the mapping w 7→ (k.w.)k,
where the dot denotes word concatenation. By choosing a suitable set of
parentheses like “{}[]()”, many existing notations are already parenthesized,
for instance Prolog lists, Lisp lists, and JSON, to name just a few.

Note that when using only parenthesized languages, words in LT always
have parentheses well nested. As a consequence, it is easy to retrieve from a
composed pattern the corresponding pattern expression, by simply matching
opening and closing parentheses, and back-substituting such sequences by a
’%’ symbol.

Example 3 (JSON arrays). If the previous list notation is parenthesized
using “[” and “]”, we obtain exactly the JSON notation for arrays, which
incidentally can also be used for lists of values.

In this notation, the flat (i.e., non-composed) pattern p = [%, %] de-
notes a list of two elements, the composed pattern [[%],[%]] uniquely denotes
p[ [%]/%1, [%]/%2 ], i.e., a list of two singleton lists; and the pattern [[%,%]]
uniquely denotes p′[ [%, %]/%1 ], where p′ = [%], i.e., a singleton list con-
taining a list of length 2. The JSON array pattern [[%],%] matches the array
[[1], [2, 3]], yielding the tuple 〈1, [2, 3]〉, but does not match the array [[1], 2,
3], because its top-level pattern [%,%] is not defined on arrays of length 3.

2.4. Base notations

With the parenthesizing restriction we imposed, any sub-pattern must
be parenthesized. If the notation of a particular sub-data type is already
parenthesized, like JSON arrays, this incurs no syntactic overhead for it.
However, this particularly penalizes sub-data of atomic base types such as
integers, strings, booleans, etc., whose notations are not “naturally” paren-
thesized. Note that the string notations in most programming languages are
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not parenthesized in the sense we defined, as we require opening and closing
parentheses to be distinct.

Example 4 (JSON objects). The following is a notation based on the stan-
dard JSON notation for objects:

• (∀n ≥ 0)(∀“keyi” ∈ String)i∈[1..n]

{“key1” : ρkey1
, . . . “keyn” : ρkeyn

, } : {d | (∀i)defined(d.keyi)}

where ρkey(d) = d.key represents the projection extracting the value of the
field named “key” of an object d, provided that d contains such a field.

Note that the ellipsis belongs to the meta-language: it is just a shorthand
for expressing all the patterns containing zero or more pairs of the form
“key” : ρkey, separated by commas.

When composing the JSON object notation above with the usual nota-
tions for integers and strings, the pattern {“a” : (1), “b” : (“two”)} would
match an object with at least one field named “a” containing the integer
1 and one field named “b” containing the string “two”. Unfortunately, the
notations for the base types must be parenthesized, which deviates from the
JSON standard in a quite unpleasant way.

To improve the usability of notations, we can accommodate in our frame-
work, under some conditions, unparenthesized sub-patterns for a set of atomic
base types. Consider a set of symbols B disjoint from {%} ⊎ O ⊎ C repre-
senting all possible values of some atomic base types, where each value is
represented by a single symbol. This is usually achieved by using a lexical
analysis returning a token for each atomic base type. Note that B is not
necessarily disjoint from A.

Now let us examine an example of ambiguous pattern involving an un-
parenthesized base notation.

Example 5 (Two-way JSON objects). The following is a matching notation
for objects also based on the JSON notation, but adding a second kind of
patterns:

• (∀n ≥ 0)(∀“keyi” ∈ String)i∈[1..n]

{“key1” : ρkey1
, . . . “keyn” : ρkeyn

, } : {d | (∀i)defined(d.keyi)}

• (∀n ≥ 0)(∀vali ∈ B)i∈[1..n]

{ρval1 : val1, . . . ρvaln : valn, } : {d | (∀i)(∃ki)d.ki = vali}
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where ρkey(d) = d.key is the projection extracting the value of the field “key”,
and ρval is the projection extracting the first field name that is associated to
the value val, provided the object contains such a field.

Thus, the first kind of patterns extracts the values of some given fields,
while the second kind of patterns does the reverse, by extracting the field
names that contain some given values.

Given this notation, consider a pattern composed with the unparenthe-
sized notation for strings: {“a” : “b”}. This pattern may be the composition
of the pattern {“a” : %} with the string sub-pattern “b”, or the composition
of the pattern {% : “b”} with the string sub-pattern “a”. The former pat-
tern means “extract the value of field ‘a’ ”, while the latter means “extract
the first field containing the value ‘b’ ”. Therefore, this composed pattern
admits two different top-level patterns, leading to ambiguity. Of course, if
we parenthesize the base notations, this ambiguity is removed: the former
pattern is expressed as {“a” : (“b”)} and checks whether the field “a” con-
tains the value “b”, and the second as {(“a”) : “b”} and checks whether the
first field containing the value “b” is exactly the field “a”.

More formally, a notation language LT is B-ambiguous if (∃p′ 6= p′′ ∈ LT )
and (∃b′i, b

′′
j ∈ B) such that:

p = p′[b′i/%i]i∈I⊂[1..|p′|] = p′′[b′′j /%j]j∈J⊂[1..|p′′|]

In other terms, there is a composed pattern that admits two top-level pat-
terns.

A notation language is base-ambiguous if it is B-ambiguous for some set
of base symbols B.

Notation languages that are not base-ambiguous can embed unparenthe-
sized base notations, because the top-level pattern is unique for any com-
posed pattern. However, the base-ambiguity property in the above definition
may not be easy to check for some notations, because the definition does
not give an algorithm to find a “critical pair” of top-level patterns for some
given pattern. We therefore give here another equivalent characterization of
base-ambiguity that may be easier to check.

Let us note ||w|| the length of word w, i.e., the number of symbols in w,
Pos(w) = [1..||w||] the set of symbol positions of the word w, and w(k) the
symbol at position k in word w, where k ∈ Pos(w).

Two distinct patterns in a notation language are conflicting if they have
the same length and if at every position, the corresponding symbols are either
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identical or at least one of them is the variable symbol:

||p′|| = ||p′′|| ∧ p′ 6= p′′ ∧

(∀k ∈ Pos(p′)) p′(k) = p′′(k) ∨ p′(k) = % ∨ p′′(k) = %

The positions in Pos(p′) = Pos(p′′) can be partitioned into three disjoint
sets:

• Eq(p′, p′′) = {k ∈ Pos(p′) | p′(k) = p′′(k)}

• V ar′(p′, p′′) = {k ∈ Pos(p′) | p′(k) = % ∧ p′′(k) 6= %}

• V ar′′(p′, p′′) = {k ∈ Pos(p′) | p′(k) 6= % ∧ p′′(k) = %}

The set V ar′(p′, p′′)∪V ar′′(p′, p′′) cannot be empty because this would imply
that p′ = p′′. When V ar′(p′, p′′) = ∅, the pattern p′ is more specific than p′′,
because p′′ has all the variables in p′ plus those in V ar′′(p′, p′′), which is not
empty. By inverting, when V ar′′(p′, p′′) = ∅, the pattern p′′ is more specific
than p′. When neither V ar′(p′, p′′) nor V ar′′(p′, p′′) are empty, patterns p′

and p′′ are overlapping.
For instance, patterns p′ = {“a” : %} and p′′ = {% : “b”} in the

two-way JSON notation for objects are overlapping, V ar′(p′, p′′) = {4} and
V ar′′(p′, p′′) = {2}.

Proposition 1. A notation language LT is base-ambiguous if and only if it
contains some pair of conflicting patterns.

Proof. see Appendix.

Proposition 2. If a notation language LT ⊂ (A ⊎ {%})∗ is B-ambiguous,
then A ∩ B 6= ∅.

Proof. see Appendix.

Proposition 2 gives thus a necessary condition for a language to be B-
ambiguous, given a set of base notations. The result is useful especially
taken the other way around: if a base notation set B is disjoint from some
notation’s alphabet A (and this condition is usually trivial to check), then
that notation is non-B-ambiguous, so the base notation B can be embedded
unparenthesized in that notation.
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Example 6 (Prolog lists). The Prolog notation for lists is the following:

• (∀n ≥ 0) [ρ1, ..., ρn] : {d | length(d) = n}

• (∀n ≥ 0) [ρ1, ..., ρn|ρ>n] : {d | length(d) ≥ n}

where ρi represents the projection selecting the i-th element from a list, and
ρ>n represents the projection returning the list obtained by dropping the n
initial elements from a list.

Note that the Prolog notation for lists is a strict generalization of the
JSON notation for arrays, in that it can represent not only lists of a fixed
length, but also lists of at least a given length; this is the case for the second
form of patterns, capturing the tail of the list.

Considering the standard base notations B0 for integers, strings, and
booleans, note that the Prolog list notation is non-B0-ambiguous by virtue
of Proposition 2, simply because B0 ∩ A = ∅, where A = {“[”, “, ”, “|”, “]”}.
In particular, the JSON notation for arrays is also non-B0-ambiguous.

In turn, Proposition 2 cannot help for determining the non-ambiguity
of the JSON notation for objects in Example 4, because in this case A ∩
B0 = String. Indeed, doubly quoted strings can appear both as field names
and as base values. Fortunately, we can prove by contradiction that there
are no conflicting patterns in the JSON object notation. Assuming that
there are two conflicting patterns {“key1” : %, ...“keyn” : %} 6= {“key′

1” :
%, ...“key′

m” : %}, they must have the same length, so m = n; as for all
colon-separated pairs, key positions correspond to key positions, and variable
positions to variable positions, it follows that keyi = key′

i, so the patterns
are equal, which is a contradiction. By virtue of Proposition 1, the JSON
object notation is non-base-ambiguous, hence it is non-B0-ambiguous.

Therefore, the JSON object notation, the JSON array notation, and its
generalization, the Prolog list notation, are non-B0-ambiguous, and can thus
be composed with the standard unparenthesized base notations.

As an important general observation, it is easy to see that if in a composed
notation there is a unique top-level pattern for any composed pattern, further
compositions with parenthesized sub-notations keep this property invariant.

In particular, as both the JSON object notation and the JSON array no-
tations are parenthesized—using “{}” and “[]”, respectively—, the complete
JSON notation, which is an arbitrary composition of these two notations,
can be embedded with the unparenthesized standard base notation. For in-
stance, the unique top-level pattern of the pattern {“a”:[“c”:1], “b”:“two”}
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is {“a”:%, “b”:%}. This is also applicable when replacing the JSON array
notation with its generalization, the Prolog list notation.

2.5. Named variables

To avoid some degree of complication in the above definitions, we consid-
ered patterns with “anonymous” variable positions, all denoted by the ’%’
symbol. Programmers usually find it convenient to associate names with the
variable positions. It is straightforward to handle patterns with named vari-
ables, noted ‘%x’, where x is the name of the variable, and also non-linear
patterns, in which a same variable name can appear several times, standing
for the same value. We omit presenting this extension here for space reasons.

2.6. Views and Active patterns

Matching notations can implement a version of views [29] or active pat-
terns [25] in user-defined syntax.

Example 7 (Polar view). Instead of the Cartesian notation for complex
numbers defined in Example 2, directly corresponding to their internal repre-
sentation, a polar notation can be defined as:

• < ρr : ρφ >

where ρr(d) =
√

d.re2 + d.im2 and ρφ(d) = arctan2(d.im, d.re).

Such a pattern is called active because the data is not simply decomposed
into existing slots; rather, the decomposition triggers arbitrarily complex
computations that return a different view of the data. It is known that
active patterns allow reconciling data abstraction and encapsulation with
pattern matching [29].

Indeed, any code using the above polar notation for pattern matching
does not have to be changed when the internal implementation of complex
number is changed; all what is needed is to change the implementation of this
notation, that is, the implementation of pattern filters and of deconstructors.

2.7. Patterns and types

Using our definition of pattern matching, there is no guarantee that a
pattern matches data of a single type. Indeed, notations for different types
are defined independently of each other, and we do not require their pattern
languages to be disjoint.
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For instance, the same JSON object notation may be implemented both
for objects with fields and for a hash table data structure. In this case, the
pattern {“a” : 1, “b” : 2} will match both objects with two fields “a” and
“b” containing the given values, and hash tables with two keys “a” and “b”
associated to the given values. Thus, the meaning of a pattern exists only
in relation to a given notation, which is always associated to a specific type.
The recognition role of a pattern works also within a type, to select data
already known to have that type, that further satisfies some predicate.

That being said, nothing prevents a user to design a closed set of nota-
tions for a fixed set of types, where the corresponding pattern languages are
all disjoint; in such a closed system, typical for the set of notations built
into a programming language, a pattern would also convey type information;
however, such closed notation systems are not the bias of this paper, which
argues for free composition of independently designed notations.

3. Implementation

Notations, as defined in the previous section, can be implemented very
easily in object-oriented languages as a simple library. Indeed, notations and
matching are all defined in relation to a type T , that naturally maps to a
class in an object language. We show two very concise implementations of
matching notations in two radically different object languages:

• JavaScript: an interpreted, dynamically typed language, with prototype-
based objects.

• Java: a compiled, statically typed language, with class-based objects
and parametric types.

3.1. The JavaScript library

The JavaScript implementation takes the form of a single file called “nota-
tions.js”, that can be included by other scripts as a library providing pattern
matching features in custom notations. The library is available as an open
source prototype, and can also be tried on-line in an Internet browser without
any installation required [28].

The complete code of the JavaScript library is shown in Figures 1, 2,
and 3. This version supports only non-base-ambiguous matching notations,
in which base types need not be parenthesized. Thus, we assume that every
user-defined notation has been proved non-base-ambiguous before being used,
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like we did for the predefined JSON object and array notations in the previous
section.

A notation is defined on an object type simply by defining for it a method
called matches(pat, off, acc), which takes a pattern as an argument. For
efficiency reasons, the pattern argument is a string together with an offset
into the string; this way, sub-strings of it can be matched without copying
them as new patterns. Finally, there is a last input/output argument which
is used to accumulate the result of the matching: a tuple, represented as a
JavaScript array, containing the variable bindings obtained so far, in left-
to-right order. In case of successful match, the method returns an updated
offset into the string, which corresponds to the position after the accepted
sub-pattern. In case of matching failure, the method raises an exception.

In JavaScript, it is easy to implement a common behavior on all objects,
by adding new methods to the top Object class. Any object has a prototype
object, from which it inherits the methods and fields; the prototype of any
user-defined or primitive object is stored in the “prototype” property of the
corresponding constructor. Thus, different matches methods can be added
to different kinds of objects as shown in Figures 2 and 3 for:

• the base types Number, Boolean and String, implementing the usual
notations for these base types

• Array objects, implementing the Prolog notation for lists; recall that
this is an extension of the JSON notation for arrays

• any other objects, via the Object’s prototype, implementing the JSON
notation for objects.

Taken together, these five matches methods implement the complete
JSON notation, with the slight generalization of Prolog-style lists instead
of the simpler JSON lists, which allows one to pattern match variable-sized
lists. In order to simplify the presentation, the implementation shown does
not tolerate whitespace in the patterns, but this feature can be added easily.

Three worker methods called by the matches methods are implemented
in Figure 1: one for matching a single character, a second one for matching
a token, and a third one for matching a sub-data with a sub-pattern: if the
sub-pattern is simply a variable, the corresponding sub-data is pushed on
the result array; if the sub-data is null or undefined (these are distinct values
in JavaScript), the sub-pattern must match these primitive values directly;
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function matchChar(ch, pat, off) {

if(pat.charAt(off) != ch) throw "fail";

return off + 1;

}

function matchToken(tok, pat, off) {

if(pat.substr(off, tok.length) != tok) throw "fail";

return off + tok.length;

}

function matchData(data, pat, off, acc) {

if(pat.charAt(off) == "%") {

acc.push(data);

return off + 1;

}

if(data === undefined)

return matchToken("undefined", pat, off);

if(data == null)

return matchToken("null", pat, off);

return data.matches(pat, off, acc);

}

function match(d, pat) {

var acc = [], len;

try {

len = d.matches(pat, 0, acc);

} catch(err) {

if(err == "fail")

return null;

else throw err;

}

if(len == pat.length)

return acc;

else return null;

}

Figure 1: The JavaScript implementation.
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Number.prototype.matches = function(pat, off, acc) {

return matchToken(this.toString(), pat, off);

};

Boolean.prototype.matches = function(pat, off, acc) {

return matchToken(this.toString(), pat, off);

};

String.prototype.matches = function(pat, off, acc) {

if(pat.charAt(off) != "\"") throw "fail";

off = matchToken(this, pat, off + 1);

return matchChar("\"", pat, off);

};

Object.prototype.matches = function(pat, off, acc) {

off = matchChar("{", pat, off);

if(pat.charAt(off) == "}")

return off + 1;

do {

off = matchChar("\"", pat, off);

var ix = pat.indexOf("\"", off);

if(ix >= 0) {

var field = pat.substring(off, ix);

if(field in this && pat.charAt(ix + 1) == ":")

off = matchData(this[field], pat, ix + 2, acc);

} else throw "fail";

if(pat.charAt(off) == "}")

return off + 1;

off = matchChar(",", pat, off);

} while(1);

};

Figure 2: The predefined base notations and the object notation in JavaScript.
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Array.prototype.matches = function(pat, off, acc) {

var ix = 0;

off = matchChar("[", pat, off);

if(pat.charAt(off) == "]") {

if(this.length == 0)

return off + 1;

else throw "fail";

}

if(ix == this.length) throw "fail";

off = matchData(this[ix], pat, off, acc);

ix++;

while(pat.charAt(off) == ",") {

off = matchChar(",", pat, off);

if(ix == this.length) throw "fail";

off = matchData(this[ix], pat, off, acc);

ix++;

}

if(pat.charAt(off) == "|") {

off = matchChar("|", pat, off);

off = matchData(this.slice(ix), pat, off, acc);

} else if(ix < this.length) throw "fail";

off = matchChar("]", pat, off);

return off;

};

Figure 3: The predefined array notation in JavaScript.
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otherwise, matching between the sub-data and the sub-pattern is delegated
to the matches method of the sub-data.

The matches method of an object type T , when applied to data d ∈ T ,
implements all the components of a notation defined in Section 2, by acting
at the same time:

• as a language recognizer, checking whether the pattern p ∈ LT ,

• as a filter FT , checking whether d ∈ FT (p),

• as a deconstructor DT , computing the tuple p(d).

The end-user function for matching is the global function match() in Fig-
ure 1, taking an object and a pattern and returning the resulting array of sub-
data or the null value. This global function simply delegates to the object’s
matches method, passing it the whole pattern and an empty accumulator. If
the method finishes with no matching failure, it further checks whether the
whole pattern was consumed, before reporting a successful match.

Named variables. It is very easy to change this implementation so as to
support patterns with named variables, including non-linear patterns, by
extending the function matchData in Figure 1 to manage mappings from
variable names to values. We omit this extension here, though implemented
by our open-source prototype.

3.1.1. Using the predefined JSON matching notation

Using this minimalist library, the JavaScript programmer can already
match any object using the extended JSON notation, which includes the
native notation for base types. For even more convenience, the keys in the
JSON notation for objects are accepted without double quotes when the key
is a simple identifier; this is consistent with the native notations for objects
in JavaScript. For instance, the pattern {“a” : 1, “b” : 2} can be written
simply as {a : 1, b : 2}. This extension, not shown for brevity, is trivial to
implement.

Example 8. The following function transforms a pair of lists of the form
{p:l1, q:l2} into a list of pairs:

function joinPairs(lsts) {

var s = match(lsts, "{p:[%|%],q:[%|%]}");
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if(!s) return [];

return [{p:s[0],q:s[2]}].concat(joinPairs({p:s[1],q:s[3]}));

}

Note that the value of pattern variable %i is retrieved as s[i− 1], because
array elements in JavaScript start at zero. If the match is successful, the top
elements of the two lists are prepended as a pair to the result of the recursive
call. Using this function, {p:[1,2], q:[3,4]} is transformed into [{p:1, q:3},
{p:2, q:4}]. If the two lists have different lengths, the unpaired elements are
discarded.

This example shows that the native notation in JavaScript integrates
gracefully with our JSON patterns, because the latter notation is just an
extension of the former; the code is thereby easy to understand and to main-
tain.

As is standard in pattern matching of structured data, both our defi-
nition of matching notations and its implementation support circular data
structures. Indeed, the recursion in the definition of matching is related to
pattern composition. As any pattern is a composition of a finite number of
patterns, the amount of recursion is also finite.

3.2. Defining a custom notation

Programmers can very easily override these default notations for any ob-
ject type by simply defining a custom matches method.

Consider for instance the elegant functional implementation of red-black
trees in Haskell, described by Okasaki [18]2. We can easily obtain a very sim-
ilar implementation in JavaScript by using a custom, very concise notation
for red-black trees.

Red-black trees are binary search trees whose nodes contain values, and
are colored black or red, subject to some coloring constraints. They can be
implemented as JavaScript objects of the following type Tree. Note how in
JavaScript an object type is defined by a constructor with the same name.

var red = 0, black = 1;

function Tree(color, left, value, right) {

this.color = color;

this.left = left;

2This example and the next one are inspired by the Matchete paper [8].
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this.value = value;

this.right = right;

}

Without pattern matching, the core of the red-black tree implementation,
the balance method, which re-balances a tree upon the insertion of a new
node, has to be coded as shown in Figure 4. As can be seen, the code
is very verbose, although much more concise than a standard imperative
implementation. This degree of verbosity makes writing such a function
tedious to write and error-prone.

Example 9. To demonstrate the advantage of using custom patterns, let us
define the following notation for red-black trees:

• [ρl ρv ρr] : {d | d.color = black}

• (ρl ρv ρr) : {d | d.color = red}

where ρl, ρv, ρr are the projections returning respectively the left sub-tree, the
node value, and the right subtree of a given tree. Note how the color of a tree
is compactly encoded in the kind of surrounding parentheses.

This notation can be easily implemented by the matches method in Fig-
ure 5. Using this notation, the balance method shown in Figure 4 can be
simplified to the one in Figure 6.

Note that pattern matching in this version of the balance method is not
done using the standard function match() defined previously, but using a
disjunctive version of it, which tries a whole list of patterns until the first
match. The function matchAny() is simply implemented as:

function matchAny(d, plst) {

for(var i = 0; i < plst.length; i++) {

var s = match(d, plst[i]);

if(s) return s;

}

return null;

}

This example shows that:

• custom notations are very easy to write
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Tree.prototype.balance = function() {

if(this.color == black && this.left != null && this.left.left != null &&

this.left.color == red && this.left.left.color == red)

return new Tree(red, new Tree(black, this.left.left.left,

this.left.left.value,

this.left.left.right),

this.left.value,

new Tree(black, this.left.right, this.value,

this.right));

if(this.color == black && this.left != null &&

this.left.right != null &&

this.left.color == red && this.left.right.color == red)

return new Tree(red, new Tree(black, this.left.left,

this.left.value,

this.left.right.left),

this.left.right.value,

new Tree(black, this.left.right.right,

this.value, this.right));

if(this.color == black && this.right != null &&

this.right.left != null &&

this.right.color == red && this.right.left.color == red)

return new Tree(red, new Tree(black, this.left, this.value,

this.right.left.left),

this.right.left.value,

new Tree(black, this.right.left.right, this.right.value,

this.right.right));

if(this.color == black && this.right != null && this.right.right != null &&

this.right.color == red && this.right.right.color == red)

return new Tree(red, new Tree(black, this.left, this.value,

this.right.left),

this.right.value,

new Tree(black, this.right.right.left,

this.right.right.value,

this.right.right.right));

return this;

};

Figure 4: The balance() method without pattern matching
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Tree.prototype.matches = function(pat, off, acc) {

off = matchChar((this.color == black?

"[": "("), pat, off);

off = matchData(this.left, pat, off, acc);

off = matchChar(" ", pat, off);

off = matchData(this.value, pat, off, acc);

off = matchChar(" ", pat, off);

off = matchData(this.right, pat, off, acc);

return matchChar((this.color == black?

"]": ")"), pat, off);

}

Figure 5: The custom notation for red-black trees

Tree.prototype.balance = function() {

var s = matchAny(this, ["[((% % %) % %) % %]",

"[(% % (% % %)) % %]",

"[% % ((% % %) % %)]",

"[% % (% % (% % %))]"]);

if(!s) return this;

return new Tree(red, new Tree(black, s[0], s[1], s[2]),

s[3], new Tree(black, s[4], s[5], s[6]));

};

Figure 6: The balance() method using a custom notation.
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• due to the first-class status of patterns and of match results, it is easy
to implement matching extensions such as disjunctive matching

• pattern matching in a custom notation can make an implementation
significantly shorter and less error-prone.

3.3. Compiled notations

The all-in-one matches methods described above are a simple and direct
implementation of our notion of pattern matching defined in Section 2, but
have at least two drawbacks:

• low performance: when matching several data objects with the same
pattern, the pattern is traversed again at each match;

• no static checks: when a pattern is invalid with respect to a notation
language, this is not reported until a match is first attempted; the
match function will simply return a null result. This happens also
when matching a valid pattern that is not defined on the current data,
for instance when matching “[]” with a non-empty list.

Both these drawbacks can be eliminated by separating, in the implemen-
tation of a notation, the language recognizer on one hand from the filter and
deconstructor on the other hand. In fact, the all-in-one implementations can
be seen as interpreted notations, while the separated implementation can be
seen as compiled notations.

Figure 7 shows all the infrastructure code that is needed to support com-
piled notations, and Figure 8 shows the pre-defined compiled notations for
base types. A compiled notation for an object type is implemented by a
matcher method that acts as a pattern language recognizer and translator:
it parses a pattern and, if the pattern is valid, it returns a function.

For instance, the matcher for numbers parses a number; only the case of
an integer is depicted. If no number is found, the matcher fails, otherwise it
returns a closure comparing some data to the stored sub-pattern. Technically,
the matcher function also returns an updated offset into the pattern, reflect-
ing the portion that was consumed. The string matcher is similar in spirit;
the matcher for booleans is even simpler, as it returns a global function.

Compiling the pattern is implemented by the global function matcher,
taking a pattern and a type. Indeed, the data is not yet available at this time,
but the notation to be compiled can be chosen solely based on its type. If
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function matcher(type, pat) {

var res = type.prototype.matcher(pat, 0), off = res[0], m = res[1];

if(off != pat.length) throw "fail";

return function(d) {

acc = [];

try { m(d, acc); } catch(err) {

if(err = "fail") return null;

else throw err;

}

return acc;

}

}

function is_undefined(d, acc)

{ if(d !== undefined) throw "fail"; }

function is_null(d, acc)

{ if(d === undefined || d != null) throw "fail"; }

function parseType(type, pat, off) {

if(pat.charAt(off) == "%") {

return [off + 1,

function(data, acc) { acc.push(data); }];

}

if(pat.substr(off, 9) == "undefined")

return [off + 9, is_undefined];

if(pat.substr(off, 4) == "null")

return [off + 4, is_null];

return type.prototype.matcher(pat, off);

}

Figure 7: Support for compiled notations in JavaScript.
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Number.prototype.matcher = function (pat, off) {

var m = pat.substr(off).match(/^[0-9]+/);

if(m == null) throw "fail";

var tok = m[0];

return [off + tok.length,

function(d, acc) {

if(d.toString() != tok) throw "fail";

}];

};

String.prototype.matcher = function (pat, off) {

var m = pat.substr(off).match(/^"(([^\\"]|\\.)*)"/);

if(m == null) throw "fail";

var tok = m[1];

return [off + tok.length + 2,

function(d, acc)

{ if(d != tok) throw "fail"; }];

};

function is_true(d, acc)

{ if(d != true) throw "fail"; }

function is_false(d, acc)

{ if(d != false) throw "fail"; }

Boolean.prototype.matcher = function (pat, off) {

if(pat.substr(off, 4) == "true")

return [off + 4, is_true];

if(pat.substr(off, 5) == "false")

return [off + 5, is_false];

};

Figure 8: Compiled base notations in JavaScript.
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the matcher method of the indicated type does not fail and consumes all the
pattern, it returns a matcher. This matcher is encapsulated by the matcher

function in a closure that simply calls the stored matcher after initializing
its accumulator.

Matching some data with a pattern is done by simply applying to the
data the matcher returned by the previous compiling step.

Finally, there is a worker global function called parseType that can be
used by the matchers of composable notations to compile a sub-pattern cor-
responding to a sub-data of a given type. In fact, any notation containing
variables is composable and must call this function. Function parseType also
handles the particular cases of null and undefined values. Note that function
parseType is essentially a staged version of function matchData in Figure 1:
the latter interprets a pattern with respect to a data, while the former com-
piles a pattern with respect to a type, and returns a function taking a data
and an accumulator to perform a match. Therefore it should be possible to
derive function parseType by partially evaluating function matchData, but
this is beyond the scope of this paper.

The red-black trees notation can be implemented in compiled form by the
matcher in Figure 9, which calls the worker function parseType for both its
subtrees and also for its value, and thus builds a closure able to recognize and
deconstruct a tree of a given color having two sub-trees of particular shapes.
Note that as opposed to the interpreted implementation, the type of values
contained in the tree nodes (in our case, a Number) has to be known at parse
time, in order to detect incorrectly typed patterns. Of course, the matcher
could be parameterized with the type of the values. Figure 9 also shows
the balance method implemented using the compiled notation for red-black
trees. The matcher resulting from the parsing phase is stored in a global
variable to ensure that the patterns are compiled only once.

As can be seen from this example, writing and using a compiled notation
is hardly more complex than writing and using an interpreted notation.

3.4. The Java library

The Java implementation, also available as an open source prototype [28],
is very similar to the JavaScript library described above. Therefore, we only
briefly sketch here its main lines and comment on some differences in the
implementation caused by differences between the two languages.

First of all, Java is mostly statically typed. That is, inheritance is declared
statically, and even if the precise type of an object can be tested dynamically,
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Tree.prototype.matcher = function(pat, off) {

var color, fun1, fun2, fun3, res;

if(pat.charAt(off) == "[") color = black;

else if(pat.charAt(off) == "(") color = red;

else throw "fail";

off++;

res = parseType(Tree, pat, off); off = res[0]; fun1 = res[1];

off = matchChar(" ", pat, off);

res = parseType(Number, pat, off); off = res[0]; fun2 = res[1];

off = matchChar(" ", pat, off);

res = parseType(Tree, pat, off); off = res[0]; fun3 = res[1];

off = matchChar(((color == red)? ")": "]"), pat, off);

return [off, function(data, acc) {

if(data == null) throw "fail";

if(data.color != color) throw "fail";

fun1(data.left, acc);

fun2(data.value, acc);

fun3(data.right, acc);

}];

}

var m = [matcher(Tree, "[((% % %) % %) % %]"),

matcher(Tree, "[(% % (% % %)) % %]"),

matcher(Tree, "[% % ((% % %) % %)]"),

matcher(Tree, "[% % (% % (% % %))]")];

Tree.prototype.balance = function() {

s = m[0](this) || m[1](this) || m[2](this) || m[3](this);

if(!s) return this;

return new Tree(red, new Tree(black, s[0], s[1], s[2]),

s[3], new Tree(black, s[4], s[5], s[6]));

};

Figure 9: Compiled notation for red-black trees.
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public interface Notation {

boolean matches(String pat, ParsePosition pos, Map sub);

}

public class Matchbox {

static boolean matchChar(char ch, String pat,

ParsePosition pos) {...}

static boolean matchToken(String token, String pat,

ParsePosition pos) {...}

static boolean matchString(String str, String pat,

ParsePosition pos) {...}

static boolean

matchMap(Map map, String pat,

ParsePosition pos, Map sub) {...}

static boolean matchList(List lst, String pat,

ParsePosition pos, Map sub)

static boolean

matchObject(Object obj, String pat,

ParsePosition pos, Map sub) {...}

public static boolean

matchData(Object data, String pat, ParsePosition pos,

Map sub) { ... }

static boolean matches(Object data, String pat,

ParsePosition pos, Map sub) { ... }

static Map match(Object data, String pat) { ... }

}

Figure 10: Interpreted notations in Java (sketch).
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static boolean matches(Object data, String pat,

ParsePosition pos, Map sub) {

if(data == null)

return matchToken("null", pat, pos);

if(data instanceof Matchable)

return ((Matchable)data).matches(pat, pos, sub);

if(data instanceof String)

return matchString((String)data, pat, pos);

if(data instanceof Number ||

data instanceof Boolean)

return matchToken(data.toString(), pat, pos);

if(data instanceof Map)

return matchMap((Map)data, pat, pos, sub);

if(data instanceof List)

return matchList((List)data, pat, pos, sub);

// else generic object notation

return matchObject(data, pat, pos, sub);

}

static Map match(Object data, String pat) {

HashMap sub = new HashMap();

ParsePosition pos = new ParsePosition(0);

if(!matches(data, pat, pos, sub)) return null;

int len = pos.getIndex();;

if(len == pat.length()) return sub;

else return null;

}

Figure 11: Interpreted notations in Java (detail).
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an object type discipline can be statically enforced, and usually is. Among
others, this means that it is not possible to add new matching methods to
the top-level Object class, unless the designers of the standard Java library
decide to do so in a future version of the language3. A first consequence
of this is that matching notations must be confined to classes implementing
a given interface. This interface, called Notation, shown in Figure 10, con-
cerns interpreted matching notations, and requires any implementing class to
define a method matches4. As we noticed a relatively high cost of exception
handling in a previous version of our implementation, method matches does
not signal a matching failure by means of an exception, like the JavaScript
implementation, but rather returns a boolean representing the applicability
of the pattern to the data. The updated offset is handled by means of a
standard object called ParsePosition, passed as an argument, that can be
both read and updated. The other arguments are the same as in JavaScript:
the pattern and an accumulator for the matching result.

Class Matchbox defines the end-user matching functions, all static. The
main entry point is method match, matching an object of an arbitrary type
with a pattern. This method, detailed in Figure 11, simply initializes a
parse position and an accumulator, and delegates to an appropriate matching
method.

As a second consequence of the impossibility to add new methods to
system-defined classes, the notations for standard objects such as String
must be implemented as static methods such as matchString, also defined in
class Matchbox. Thus, the delegation from method match to the appropriate
matching method must handle these predefined notations as special cases.
This dispatching is implemented in the auxiliary static method matches. As
can be seen in this method, there are pre-defined notations for the standard
classes:

• String: the double-quoted notation,

• List: the JSON array matching notation extended in Prolog-list style,

3Some extensions to Java such as eJava [31] have been proposed recently to add methods
to predefined classes, but they are not using just the normal Java compiler, in contrast to
our full standard compliance.

4When using Java version 1.5 or later, substitutions passed as argument sub should be
represented by a Map<String,Object> instead of simply a Map.
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• Map: the JSON matching notation for objects, and

• any other object: also the JSON matching notation for objects.

Indeed, the JSON object notation works as well for the abstract class Map,
representing any implementation of a mapping from keys to values, and for
any kind of objects that do not have a more appropriate notation, by con-
sidering the public fields as keys and their content as values. However, the
same JSON object notation must be implemented differently for a Map,
where keys and values are accessed using methods such as Map.containsKey
and Map.get, and for a generic Object, where fields and their content are
retrieved using the Java reflection API.

Besides these pre-defined notations, class Matchbox also defines some
worker functions, callable by the pre-defined and user-defined notations. The
workers can be used for matching characters, tokens, and some sub-data with
a sub-pattern.

Using this simple infrastructure, Java programmers can already use the
extended JSON notation for lists, maps, and any other objects containing
public fields. They can also easily design a more appropriate custom notation
for their classes by simply overriding the matches method, as shown in Fig-
ure 12 to implement our notations for red-black trees. As can be seen in the
balance method, the Java code is slightly more verbose than the JavaScript
code in Figure 6 because variable values are extracted from a substitution
using a get method and down-casted to the expected type, which incurs a
run-time check.

A compiled notation may also be defined on a class by adding a static
method called matcher, taking a pattern string and an input/output pattern
position and returning a matcher. As a syntax for closures does not currently
exist in Java, matchers are defined as objects implementing the following
interface:

public interface Matcher {

boolean match(Object data, Map sub);

}

3.5. Performance

As matching notations are implemented in a library and not built into
the language, their use certainly incurs some overhead. If this performance
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public class rbTree implements Notation {

...

public boolean matches(String pat,

ParsePosition pos,

Map sub) {

return

Matchbox.matchChar((color == black? ’[’: ’(’),

pat, pos) &&

Matchbox.matchData(left, pat, pos, sub) &&

Matchbox.matchChar(’ ’, pat, pos) &&

Matchbox.matchData(value, pat, pos, sub) &&

Matchbox.matchChar(’ ’, pat, pos) &&

Matchbox.matchData(right, pat, pos, sub) &&

Matchbox.matchChar((color == black? ’]’: ’)’),

pat, pos);

}

static final String pats[] = {

"[((% % %) % %) % %]",

"[(% % (% % %)) % %]",

"[% % ((% % %) % %)]",

"[% % (% % (% % %))]"

};

rbTree balance() {

Map s = Matchbox.matchAny(this, pats);

if(s != null)

return tree(red,

tree(black, (rbTree)s.get(0),

(Integer)s.get(1), (rbTree)s.get(2)),

(Integer)s.get(3),

tree(black, (rbTree)s.get(4),

(Integer)s.get(5), (rbTree)s.get(6)));

return this;

}

static rbTree tree(int c, rbTree l, int v, rbTree r)

{ return new rbTree(c, l, v, r); }

}

Figure 12: Defining a custom notation in Java.
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price is too high, their usefulness in practice could be seriously compromised,
in spite of the added programming comfort, elegance, and maintainability.

Ideally, we would like to perform a fair comparison between the perfor-
mance of our pattern matching library and that of a built-in pattern match-
ing mechanism, but there is no pattern matching of general data structures
built into either Java or JavaScript. Therefore, we can only do a less fair
comparison, by measuring the overhead of pattern matching as compared to
hand-crafted code performing no pattern matching at all.

Under these constraints, let us consider a somewhat extreme example—
that of the implementation of red-black trees described in section 3.2. The
insertion into red-black trees (not shown), after creating a new leaf, just
calls the method balance recursively over the tree. We have already shown
three versions of balance in JavaScript: one without pattern-matching in
Figure 4, a second one using interpreted notations in Figure 6, and a third
one using compiled notations in Figure 9. As balance applies up to four
patterns on each node and does nothing else, we may say that insertion into
red-black trees makes a heavy use of pattern matching. We also implemented
in Java the three versions of red-black trees insertion, among which only the
interpreted notation is shown in Figure 12. Furthermore, we experimented
with two versions of the end-user matching functions, accepting only linear
patterns, respectively also non-linear patterns.

The benchmarks were executed on a Linux PC equipped with an AMD
Athlon XP 2800+ processor running at 2GHz with 256MB of RAM. The
execution environment for JavaScript was a Firefox 3.0.18 browser containing
a Gecko JavaScript engine. Each timing is the average of 5 different runs.
The execution environment for Java was OpenJDK VM and Runtime version
1.6.0.

The JavaScript benchmark inserts 1000 elements in a red-black tree and
the Java benchmark inserts 100,000 elements; recall that JavaScript is an
interpreted language. The results are given in Table 1. Depending on the
version used, the slowdown factor due to pattern matching, when compared
with the hand-optimized version, is between 2.3 and 6.1 in Java, and between
3.2 and 6.4 in JavaScript. As expected, compiled notations are almost two
times faster than interpreted notations, and as we saw, only slightly more
complex to implement; hence, it seems worth investing the extra effort for
this performance gain. Also as expected, linear patterns are faster than non-
linear patterns, because in the latter case, the engine has to check variable
freeness and equality.
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Version hand- compiled interpreted

crafted notation notation

linear non- linear non-
linear linear

Java time (ms) 371 854 1444 1631 2257
Java slowdown factor 2.3 3.9 4.4 6.1

JavaScript time (ms) 99 317 365 521 632
JavaScript slowdown factor 3.2 3.7 5.3 6.4

Table 1: Performance of matching notations.

Discussion. While these overheads might seem prohibitive at first sight, it
is very instructive to compare them with those of another form of widely
used pattern matching: matching of strings using regular expressions. Reg-
ular expressions are integrated in the JavaScript language, by means of a
standard Regexp object type. Regexp objects are natively parsed in a spe-
cific syntax by the interpreter, within slashes /.../, and accepted as argu-
ments to standard methods such as String.match(), as shown in the fol-
lowing JavaScript code sequence, which recognizes messages of the form:
“File /usr/lib/mypatterns not readable, please use chmod!!!”, and returns
the length of the file name:

m = s.match(/File ([^ ]*) not (found|readable).*!!!/);

if(m != null) return m[1].length;

Regular expressions are also available in Java, provided by the standard
library module java.util.regex; there is no specific syntax for regular
expressions—they are represented as strings, much like our notations. Here
is the above code snippet, rephrased in Java:

Pattern pattern = Pattern.compile(

"File ([^ ]*) not (found|readable).*!!!");

Matcher matcher = pattern.matcher(str);

if(matcher.matches()) {

return matcher.end(1) - matcher.start(1);

}

Starting from this relatively naive code sequence, some standard tech-
niques can be applied to improve performance: (1) using non-capturing
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Version manual optimized regex

regex

Java time (msec) 400 4225 5162
Java slowdown factor 10.6 12.9

JavaScript time (msec) 590 1714 1443
JavaScript slowdown factor 2.9 2.5

Table 2: Performance of regular expressions.

grouping, which avoids saving sub-strings that are not used, such as the
“(found|readable)” sub-string, and (2)—for Java only—using possessive quan-
tifiers, which avoid backtrack once a sub-string has been matched; these
combined techniques lead to the optimized pattern:

File ([^ ]*+) not (?:found|readable).*+!!!

For ultimate efficiency, the above code can be further hand-optimized
not to use regular expressions at all, by replacing it with carefully written
string operations such as extractions and comparisons. For instance the Java
hand-crafted version could be:

int pos;

if(str.startsWith("File ") && ((pos = str.indexOf(’ ’, 5)) >= 0)

&& str.startsWith("not ", ++pos) &&

(str.startsWith("found", (pos += 4)) ||

str.startsWith("readable", pos)) && str.endsWith("!!!")) {

return pos - 10;

}

The hand-optimized version is less concise, less convenient to write, and
much less maintainable, so probably very few Java or JavaScript program-
mers would ever bother rewriting the code this way, except maybe for a
handful of really critical cases. The optimization may be much harder to
perform for more complex regular expressions.

Table 2 shows the times in milli-seconds we obtained in Java by matching
one million strings, respectively obtained in JavaScript by matching 100,000
strings. Of course, the regular expression compile operation is outside the
loop. As it can be seen, using regular expressions in Java incurs a severe
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overhead—10.6 to 12.9 times slower than the hand-crafted code, and a sig-
nificant overhead in JavaScript—2.5 to 2.9 slower than the hand-crafted
code. Note that the “optimized” regular expression in JavaScript, using
non-capturing grouping, is actually slower. It is somewhat natural that the
overhead in JavaScript is much lower, as regular expressions are integrated
into the language, whereas available as a library in Java. However, in both
cases the price to pay for matching is significant.

Note that this regular expression benchmark may be seen as somewhat
unfair, as the example does not exploit more powerful aspects of the library
such as backtracking. With a more complex pattern, the manually optimized
code can be simply too costly to write—in this case, we cannot talk about
overhead at all! However, the purpose of this example is just to give an idea
about the overhead of regular expression matching on a common case.

Seen in this light, the overhead of matching notations is comparatively
very good in Java on the small benchmarks considered here, and may seem
acceptable also in JavaScript, at least in cases where the proportion of pat-
tern matching on overall program execution time may be much lighter than
in these micro-benchmarks. Like for regular expressions, the overhead of
matching notations may be largely justified by the gain in expressiveness,
conciseness, maintainability, and reliability—by avoiding error-prone man-
ual optimizations.

4. Related work

Extensions of functional languages related to concrete syntax patterns
have been proposed in the past. Aasa et al. [1] extended ML with “conc-
types” (standing for concrete syntax types), that define an arbitrary context-
free syntax, from which are automatically derived: a type definition for the
language ASTs, a parser converting language objects into ASTs, and a printer
for ASTs. This approach allows one to use patterns both for matching and
building ASTs of that language, but is not applicable to defining concrete
syntax for native data structures, such as instances of any other ML types,
that do not have the stereotyped AST structure. As opposed to that, match-
ing notations allow one to add matching syntax to existing user or pre-defined
types, without changing their layout.

Mauny [15] extended ML with a “stream” type using which parsers and
printers for user-defined languages may be conveniently written in ML. By
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integrating such user-defined parsers as hooks into the ML parser itself, it be-
comes possible to use custom syntax patterns for native data structures. This
benefit is similar to our matching notations, but their approach is only appli-
cable to languages with existing pattern-matching support. Indeed, the user
patterns are pre-processed as ML ASTs, before being passed to the compiler,
so that the matching of user patterns is reduced to the usual ML pattern
matching. A further constraint on the applicability of the approach is that
the user parser has to call the ML parser for allowing variables or expressions
in the patterns. Hence, the ML parser must be accessible to user programs,
so the host language implementation must be an open one. In contrast, our
approach is applicable to any object language, with no constraint on the host
language implementation. Roughly the same comparison applies to a later
and more enhanced OCaml extension system, called Camlp4 [20]. Camlp4
completes the support for streams and user-defined parsers with an alter-
nate way for defining parsers using declarative LL(1) grammars. Moreover,
these grammars can be extended and redefined. Actually, all the OCaml
language is redefined in this formalism; this allows users not only to extend
the language, but also to redefine any of its existing constructs. On the other
hand, this represents an even more open compiler, in which the whole host
language grammar, not just an executable parser, is available to user exten-
sions. User-defined patterns are still reduced to native OCaml patterns, so
this approach also requires existing pattern matching support from the host
language.

In the same spirit as Campl4, Haskell’s quasi-quotation mechanism [13] is
implemented as a minimalist patch for the Glasgow Haskell Compiler (GHC).
In this system, user-defined parsers do not have access to the whole Haskell
grammar, neither can call the standard Haskell parser. Rather, the com-
piler itself calls user-defined parsers on the customized patterns, and offers
them a library for building and manipulating Haskell ASTs. Therefore, this
approach also relies on a somewhat more restricted form of open compiler;
it also requires pattern matching support from the host language. Another
important difference is that when a native datatype in Haskell is given a con-
crete syntax for matching, the datatype has to be modified to accommodate
“anti-quotations”, i.e., pattern holes, because user patterns are parsed to this
extended datatype. In our approach, custom patterns are directly matched
with a native datatype, or directly produce a matcher, so the datatype must
not be modified in any way, except for overriding its “matches” method;
this may be an important advantage when retro-fitting patterns in a legacy
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program. Last but not least, Haskell anti-quotations are limited to variable
names, because the user parsers cannot call back the Haskell parser on a
more complex sub-pattern. This means that different notations cannot be
nested in the same pattern. In contrast, nested notation composition is one
of the main features of matching notations.

On the other hand, pattern combinators [21] have been used to reim-
plement pattern matching in functional languages as a pure library, with
the added advantage of being able to handle patterns as first-class objects.
This is similar to our custom notations, but pattern combinators are further-
more type-safe: providing data of a different type than that expected by a
pattern is detected as compile time. This useful feature is obtained by rep-
resenting patterns as functions, and by building patterns using combinators;
thus the types expected by a pattern are exposed to the host language type
checker. Another consequence is that combinator-based patterns are written
in “abstract syntax”, as function applications. As opposed to that, matching
notations are written in customizable, concrete syntax, at the price of being
type-unsafe.

Views [29] and more recently active patterns [5, 25] extend functional
languages to allow matching of a pattern with a custom projection of a data
structure. The main goal of views is to allow pattern matching on abstract
data types without breaking encapsulation. The pattern is written in a pre-
defined syntax, that of first-order terms. When the root of the term pattern
is an active pattern, the matching engine calls a corresponding user-defined
function to decompose or pre-process the subject data, and the result is used
in further matching. While allowing the same benefit of pattern matching
on objects without breaking encapsulation as demonstrated by our example
of polar notation for complex numbers, matching notations go beyond views
and active patterns by allowing users to customize also the syntax of the
projection to be matched. On the other hand, as opposed to views which
are bidirectional mappings, matching notations implement no transformation
from the projection to the data, and cannot simulate “total” active patterns:
they always represent “partial” active patterns [25].

Active patterns have been also added recently to object-oriented lan-
guages, for instance in Scala [4] or in Java extensions such as Pizza [17],
TOM [16], JMatch [12], and Matchete [8].

Matchete is particularly interesting here for two reasons. Firstly, because
it studies the integration of several notations such as first-order terms, ar-
ray patterns, Erlang-style bit patterns, and regular expressions into Java.
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Secondly, because it adapts active patterns to the object way, by extending
Java with deconstructors, which are user-defined methods of the object to be
matched. This means that the exact deconstructor called during some match-
ing depends on the type of the object, by effect of method dispatching, as in
our notations. However, Matchete patterns are written in a limited number
of pre-defined syntaxes. Besides those, Matchete also offers user-defined pat-
terns called “extractors”. Extractors are user functions taking as arguments
some data and a pattern given as a string, so in principle, offer support for
patterns written in custom syntax. However, Matchete users have to adopt
a non-standard pre-processor. Our approach shows that matching notations
can be integrated directly into Java as a library, without any language ex-
tension, thereby avoiding the compatibility problems of the preprocessing
approach. It is also instructive to see how JSON object patterns can be
implemented in both approaches for some user class C. In our custom no-
tations, the whole notation can be implemented as a single method of class
C, named C.match(), handling different patterns such as {a : %}, {b : %},
{a : %, b : %}, etc. In Matchete, each of these patterns have to be im-
plemented as a different deconstructor: C.a~(Object x), C.b~(Object y),
C.a_b~(Object x, Object y), and so on. Thus, a match method of our
custom notations may implement an unlimited number of different Matchete
deconstructors. Furthermore, if the notation has to be redefined for a sub-
class of C, only the match method has to be redefined in our approach, as
opposed to all the different deconstructors in Matchete. From this point of
view, one may consider that matching notations achieve a type-unsafe, but
more comfortable integration with the object paradigm than Matchete’s de-
constructors. Note however that a Matchete extractor can implement JSON
object patterns in a single function, but: the extractor is not a method of
the datatype so it cannot be overridden on a sub-class; when using extrac-
tors, types are no more checked statically5; there is no framework for easily
implementing extractors, nor for specializing them for a given pattern, to
improve the efficiency; finally, when composing several user notations, these
are less integrated syntactically: compare for instance the following nested
pattern for a JSON object containing two complex numbers, first written in
matching notations, then using Matchete extractors:

• "{a:(%+%i),b:(%+%i)}"

5As in our implementation, extractors return a tuple of generically-typed Object items.
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• json("{a:%,b:%}")~(complex("%+%i")~(int x, int y),

complex("%+%i")~(int s, int t)).

That is, different matching notations are directly nested into each other,
while Matchete extractors are nested as parameterized terms, which has the
effect of breaking the pattern into pieces.

JMatch [12] explores a more radical extension of Java, not only support-
ing a powerful form of pattern matching, but also some logic programming
features such as invertible computations. For instance, JMatch can express in
a single boolean expression both an object constructor and a de-constructor.
Our matching notations are only used for de-constructing data; investigating
ways to use them for object construction constitutes an interesting subject for
future work. On the other hand, JMatch only supports a fixed notation—
that of Java expressions, and is implemented as a pre-processor, not as a
library. JMatch also requires learning a new programming style.

Pizza [17] introduces several useful extensions to Java, among which pat-
tern matching of algebraic types. Like in the usual pattern matching of
functional languages, patterns are written in a fixed syntax: that of terms;
patterns over algebraic types expose the structure of data; users cannot define
new patterns, because patterns are in a one-to-one correspondence with case
tags. Pizza is also implemented by pre-processing into Java. Interestingly,
the ideas from Pizza related to parametric polymorphism strongly influenced
the addition of generic types into Java, but Pizza’s pattern matching ideas
did not have the same destiny. Scala [4] is a newer attempt to incorporate
pattern matching features, among many other features, into an object lan-
guage, not designed as extension of Java, but compiled to Java bytecode and
interoperable with Java code and libraries. Scala mainly introduces two con-
structs for pattern matching in an object setting. Firstly, “case classes” are a
means to define union types that can be matched against patterns using type
constructors, much the same way as in functional languages. This kind of
patterns does not hide the implementation of types. Secondly, “extractors”
are a concept very similar to views in functional languages (see above), in
that they allow user-defined conversions from one data type to another to be
applied implicitly during pattern matching. As such, extractors are a form of
extensible matching, and do provide representation independence for objects
used in patterns. Both case-classes and extractor patterns are expressed as
first-order terms, and this syntax cannot be customized.

TOM [16] also adds pattern matching extensions to different imperative
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languages, including Java, also using a pre-processor approach. The main
goal of TOM is to bring matching and rewriting of tree structures such as
ASTs to a wide audience of programmers. In reality, not only trees, but any
user datatype can be matched, provided the user implements for it a tree
interface, consisting of four functions (get fun sym, get subterm, etc.). List
matching is also supported on any data structure provided the user imple-
ments for it a list interface, consisting of seven functions. Patterns in TOM
are always written using the syntax for terms. In comparison, our notations
implement matching of user data in custom syntax, with less overhead (in
a single method), and without a pre-processor. On the other hand, TOM
patterns are type-safe, checked for exhaustiveness, and the matching is more
powerful: it supports equational theories and may compute several matches
for a list pattern.

The ability of mixing different notations for data within the same pro-
gramming system is a striking similarity between matching notations and
Intentional Programming (IP) [23]. This ability, in both cases, comes from
the fact that notations are not the way data is represented, but just cus-
tomized projections of the internal representation of data. This allows some
degree of ambiguity in the notations, which, in turn, allows mixing notations,
and makes notation design lighter than DSL design. However, notations in
IP are mainly used for visual rendering, and for wysiwyg-style editing of the
data, which can be viewed as a form of manual pattern matching—visually
localizing the sub-parts that are manually substituted. As far as we know, au-
tomatic matching and transformation operate on the internal tree-structured
form, not on its customized projections. As opposed to that, in matching no-
tations, projections are always textual, meant to be included in the program,
which allows the program to directly operate with the notations. Thus, with
matching notations, programming and domain-specific notations are much
closer integrated. More fundamentally, IP proposes a completely new devel-
opment environment, specifically tailored to support visual projections and
editing thereof on the surface side, and to support sophisticated tree transfor-
mations on a rich, extensible representation, on the internal side. Matching
notations are radically different in the fact that programmers continue to
use their favorite language, compiler and their IDE, while custom matching
features are added as a minimalist library.

In PADS [7], external data languages may be defined in the form of type
definitions annotated with layout information. The type-based description
also implicitly defines an in-memory representation of the data, and bidirec-
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tional transformations between the internal and external forms: parsers and
serializers. It may be thought that this is enough to use PADS for matching
any in-memory data in a custom data language. However, while any PADS
type is compiled to a native type, it is unclear if any native type can be
obtained by compiling a PADS type. Assuming it can, it seems to be no sup-
port to match the in-memory representation using the external notation. For
instance, in PADS/ML [14], it seems that once the external data is parsed
and in-memory, only the built-in pattern matching of ML can be used to
match it. In PADX [6], in-memory data can be viewed as XML, by means
of a lazy two-way conversion, and matched using XPath, but not using the
external notations. Another difference is that programmers have to learn
and use an external PADS tool and language in addition to their standard
development tools, as opposed to our approach.

In JavaScript the concrete syntaxes for arrays and objects were initially
used only to build literal arrays and objects, but starting from version 1.7,
they also serve to decompose objects via “de-structuring assignments”, which
are a very limited form of pattern matching: they are able to decompose some
data according to its structure, but do not return a result (failure or success);
the left-hand side can only contain variables, not values; a variable cannot
appear more than once; the size of the receiving array must be fixed, etc.
Hence, they cannot be used to recognize data having a particular shape.
More importantly, the predefined notations for arrays and objects cannot be
changed or extended, and new notations cannot be added.

The idea of using plain native objects of a language as patterns, for match-
ing them with other native objects, has been constantly re-discovered in var-
ious languages such as Java [27] or JavaScript [24]. The basic technique is
to use some specific objects to stand for pattern variables, and to implement
pattern matching as tree matching between a native object and a pattern
object. This allows implementing a surrogate of term-like pattern matching
in a library, and also treating patterns as first class objects, but the syntax of
patterns is constrained to be the syntax for representing objects in the host
language. This not only means that the syntax is fixed, but also that it is
usually not very well-suited for matching purposes.

The OMeta language [30] is somewhat similar in spirit to our work in
that it aims at providing flexible pattern matching mechanisms for arbitrary
data; its main innovation is to use grammars, annotated with actions, not
only for describing and processing text, as is usual, but also for describing and
processing structured data. In OMeta’s view, the patterns are the grammar
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productions, so patterns are written in a BNF-like syntax for expressing
grammars, not in a user-defined syntax. A more fundamental difference
is that OMeta is an experimental programming language in which actions
written in an existing language (Scheme, Smalltalk, etc.) can be embedded;
while our goal is adding patterns to an existing language unmodified.

A similar comparison can be done with the Rascal language [11], a recent
example of programming language specialized for “language engineering”
problems: language definition and parsing, static analysis, program trans-
formation, translation, etc. Rascal offers, among other features, pattern
matching of parsed programs in concrete syntax, and rewriting rules relying
on this pattern matching support. Using these features, Rascal surely lowers
the cost of implementing program manipulation tools. From the very narrow
point of view of pattern matching implementation, it can be seen as quite
opposite to our custom notations, as it defines a whole new language offering
matching in user-defined syntaxes, while our custom notation accommodate
custom syntax matching, not limited to parsed programs, into existing lan-
guages with no extension at all. Naturally, the trade-offs are very different.

Unparsed patterns introduced in some previous work [22] are similar to
interpreted matching notations in that the matching is implemented as a
minimalist library and does not involve parsing the patterns. However, un-
parsed patterns are limited to matching ASTs, that is, tree structures for
which a surface syntax is defined. They do not address matching of native
data structures such as arrays, neither of circular data. Compiled matching
notations are even more different in their implementation technique.

Finally, there have been endless discussions in various programmer com-
munities whether it is worth extending object-oriented languages to support
pattern matching of data structures, or rather pattern matching should be
rephrased using only standard object mechanism such as method dispatching
or multi-dispatching. Our implementation of matching notation shows that
pattern matching, even in custom syntaxes, can be implemented using only
standard object mechanisms.

4.1. Comparative summary
Among the pattern matching approaches discussed above, the closest to

our work are summarized and compared in Table 3, according to several
features:

• User-defined syntax: Is it possible to write the patterns in a custom
syntax?
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User-defined syntax x x x x
Syntax composition x x
Mainstream language x x x x x
Any data matchable x x x x x x x x x x
Extensible matching x x x x x x x x
Runtime-type driven x x x
Preserves encapsulation x x x x x x x x
Static type checks x x x x x x x
Other static checks x x x x x
Non-linear patterns x x x x x
First class patterns x x x x
Constructor patterns x x x x x x
Parametric patterns x x x x x

Table 3: Pattern matching features — Summary.

Note that in MatchO custom syntaxes can only be used for ASTs, so
they are not considered as available for any datatype.

• Syntax composition: Can different custom syntaxes be textually nested
in each other?
Note that in Matchete user-defined syntaxes are not textually nested,
although they are part of a same pattern (see the example on page 43).

• Mainstream language: Is the approach integrated in a mainstream lan-
guage?
Note that F# and Scala are not considered mainstream languages, even
though they are compiled to mainstream platforms, and are therefore
inter-operable with mainstream languages. Matchete, JMatch, and
TOM are Java extensions, while MatchO and Custom Notations are
pure Java (and JavaScript) libraries.
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• Any data matchable: Is the approach applicable to match any datatype?
Note that all the selected systems allow any data to be matched. How-
ever, Haskell’s quasi-quote requires slightly modifying the datatype in
order to be matchable.

• Extensible matching: Can user-defined code be called during matching?
Note that in Camlp4, user code is called at quotation parsing, not
during matching, so it is not considered extensible in the above sense.

• Runtime-type driven: When matching is extensible, is the user-defined
code selected depending on the runtime type of the subject data?
This is the case in Matchete, JMatch, and interpreted custom notations,
where the deconstructor is defined as a method of the datatype, and is
selected using dynamic dispatching, as opposed to MatchO and Scala
extractors, where the matching behavior is a method of the pattern.

• Preserves encapsulation: Is the approach compatible with data encap-
sulation?
Note that in Camlp4, quotations are reduced to standard ML patterns,
and matched using the standard ML mechanism, which does not allow
implementation hiding.

• Static type checks: Are the types of pattern variables checked statically
and eventual errors reported at compile time?

• Other static checks: Are other static checks performed statically, such
as verifying exhaustiveness or overlap of a set of patterns?
Note that in Scala, such checks are performed only on case classes, not
on extractors.

• Non-linear patterns: Can a variable occur several times in a pattern,
standing for the same value?

• First class patterns: Can patterns be used as first-class values, that is,
be passed as parameters, returned as results?
This is the case for F# active patterns and Haskell patterns combi-
nators, where patterns are functions, for MatchO, where patterns are
ordinary objects, and for custom notations, where patterns are strings.
Note that in Scala, patterns are not values, but first-class status may
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be simulated using “pattern-matching anonymous functions”. Simi-
larly, in JMatch passing a pattern as a parameter can be simulated to
some extent by passing an object having a pattern method.

• Constructor patterns: Can patterns be used to build objects?

• Parametric patterns: Can patterns be parameterized?
Note that in Matchete, parameterized pattern exist, but are distinct
from deconstructor patterns, which cannot take input parameters. In
Scala, type patterns can be parameterized by type variables.

By examining the table, one can see that the matching systems which pre-
serve data encapsulation are exactly those that have an extensible matching
engine. This is because all these systems are calling during matching some
form of user-defined projectors to decompose the data, thus implementing
a concrete view of the data without exposing its implementation. Further-
more, the projectors are in general partial functions, defined on a subset of
the datatype. From this point of view, the various systems differ only in the
way they map patterns to user-defined projections.

In Haskell pattern combinators and in F# active patterns, a flat pattern is
a user-defined projection function: in the former case written in continuation-
passing style and passing the list of decomposed values to the success con-
tinuation, and in the latter case written in direct style and returning the
list of decomposed values wrapped in an option type or as a sub-case of an
anonymous union type; these constitute partial or total projections.

In Scala, too, a flat extractor pattern is mapped to the unapply method
of the corresponding extractor object, returning an optional tuple, econding
a partial projection; a case class pattern also corresponds to a partial pro-
jection, and a complete set of class patterns to a total projection. Similarly,
a flat pattern involving either Matchete deconstructors or JMatch “pattern
constructors” is the application of a deconstructor method defined on the
subject data; the deconstructor may succeed or fail, thus representing a par-
tial projection. In TOM, a functor name occurring in a pattern is statically
mapped to a pair of user-defined functions in the target language (get fun -
sym and get subterm), and also represents a partial projection.

In our interpreted custom notations, a pattern matching involves a call
to the matches method of the subject data, which takes the pattern as an
argument and produces a list of decomposed values, or fails; this constitutes
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a partial projection. When a custom notation is compiled, this also produces
a partial projection function, to be invoked on the subject data.

Thus, in spite of the apparent diversity of these approaches, the mean-
ing of matching a flat deconstructor pattern6 with some subject data could
be defined for all these systems in the projection-based model introduced
in Section 2 if (1) a suitable pattern language and (2) a suitable mapping
from patterns to projections are provided for each framework, and (3) the
resulting language of composed patterns is proved to be non-ambiguous. In
that model, each flat pattern is mapped to a projector and its sub-domain,
that is to say, a partial function decomposing the data in a tuple of values.
Then the meaning of composed patterns automatically follows from our def-
initions. This conceptual unification would be useful because currently all
these systems define the semantics of matching flat and composed patterns
in very different ways, such as: program transformation (e.g., JMatch), infor-
mal operational specification (e.g., Matchete), or a concrete implementation
(e.g., Pattern combinators).

5. Conclusions

We presented a flexible form of pattern matching, with the following main
characteristics: the syntax of patterns can be freely defined; free composabil-
ity of independent notation is ensured by a simple convention of parenthesiz-
ing the patterns; named variables and non-linear patterns can be supported;
patterns are first-class and come in two flavors: interpreted and compiled;
the implementation is very simple, can be used with no investment, via the
predefined notations, and can be enriched very easily with new notations; fi-
nally, the performance penalty for using compiled and linear notations ranges
from quite tolerable, when compared to that of built-in regular expression
matching, to very good, when compared to standard regular expressions li-
braries.

One consequence of our implementation as a library is that all the pattern
variables are dynamically typed. To be precise, in languages that support
pattern matching natively (e.g., ML), program variables can directly appear

6More work is probably required to express, for instance, the full range of JMatch
patterns besides deconstructor patterns, including the use of any Java expression as a
pattern, and even in several execution modes, considering different variables as knowns or
unknowns.
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as pattern variables, and their type can be inferred according to the type of
the matched sub-structure. When matching notations are implemented as
a library, as shown above, pattern variables are disjoint from program vari-
ables, and they always have a generic type (e.g., “object”). In dynamically-
typed languages such as JavaScript, this does not make any difference, but in
statically-typed languages such as Java, pattern variables have to be down-
casted to statically-typed program variables using a runtime check. This
point was illustrated by an example in Section 3.4. Another consequence of
patterns being implemented as a library is that the compiler cannot perform
checks about pattern exhaustiveness or pattern overlap.

Future work may address several aspects. First, the concept of notation,
as presented in Section 2 and its specific implementation as a run-time library
are not tied to the manual implementation of the pattern language recogniz-
ers. Making pattern languages declarative and defining them separately from
the program should allow building tools to automatically generate the code
for matching methods, still without requiring any language extensions. These
external code generators could produce directly bytecode or executable code
that would be more efficient than the closures we are currently producing.
Another advantage of expressing notations declaratively would be the poten-
tial to check them for base-ambiguity, automatically or semi-automatically;
one can imagine, for instance, notations that carry a checkable proof of non-
base-ambiguity. An interesting question related to declarative notations is
whether user-defined notations could be expressed more easily using some
form of parser combinators [9]. For that, parser combinators remain to be
ported to JavaScript for instance, which does not even provide a recursive
let construct. Another difficulty of such an attempt is to keep the overhead
of matching reasonably low, at this increased level of abstraction.

Secondly, it would be interesting to explore techniques for reducing the
amount of parentheses around the sub-patterns for particular classes of pat-
tern languages; expressing notations more declaratively, as discussed above,
could enable using recent advances in parse table composition [3].

Thirdly, notations could be extended to serve not only for de-constructing,
but also for constructing data structures in custom syntax. For example,
when returning a new red-black tree from function balance in Figure 12, the
quite verbose nested constructors could be replaced by a single constructor
call as follows:

if(s != null) return new rbTree("([% % %] % [% % %])", s);
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We have experimentally written one such a constructor in the Java imple-
mentation, and preliminary performance measurements are very encouraging.
However, several issues remain to be solved in order to generalize this feature:

• some de-constructing notations do not make sense in a constructive set-
ting; in particular, the default JSON-based notation for de-constructing
the public fields of objects of any class does not make sense for con-
structing objects, as it would violate encapsulation; our formalization
should be extended to accommodate such asymmetries

• whenever a same notation can be used both as a constructor and a
de-constructor, the user should be able to define both of them via a
single method

• the overhead of matching should be kept low, both in the Java and
JavaScript implementations, and both for interpreted and compiled
notations.

Last but not least, experimenting with many new notations, up to using
them in some real-scale applications, could give precious new insights for
improving the usability and generality of the approach.

In terms of potential impact, we believe that, beyond bringing more com-
fort and an elegant mechanism to a wide audience of programmers, this
creativity-enabling technology can promote programmers from their current
role of passive language consumers to that of active language contributors.
A rich eco-system of notation designers and users, crossing the traditional
boundaries between programming languages, may change the shape of data
notations in languages to come.

Today, the language evolution cycle is extremely long: the inspiration of
most language designers is rooted in past programming languages, combined
with recent research results and prototypes, to design the next generation of
languages. As data notations are currently built into languages, they evolve
at the same slow pace. Also, the clear separation between designers and users
makes that the former cannot be exposed to all of the many, and extremely
different, needs that the latter encounter in real-scale projects all over the
world. As opposed to that, in the open evolution model enabled by custom
notations, language designers can take their inspiration from a vast pool of
different notations, mostly coming from real practice; they can generalize and
select the most elegant and powerful ones for pushing into the next version
of a language.
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Appendix

Proof of Proposition 1

Proof. To prove the forward implication, consider a base-ambiguous lan-
guage LT . This means that for some B there exist two patterns p′ 6= p′′ ∈ LT

and some base values (b′i)i∈I⊂[1..|p′|], (b
′′
j )j∈J⊂[1..|p′′|] ∈ B such that

p′[b′i/%i]i∈I⊂[1..|p′|] = p′′[b′′j /%j]j∈J⊂[1..|p′′|] = p

Note that as each variable symbol is replaced by one symbol in B, p, p′,
and p′′ have all the same length, so Pos(p) = Pos(p′) = Pos(p′′) = [1..||p||].
Let PosI and PosJ be the positions of the variables %i in p′ and %j in p′′

respectively. Then:

• Any position in Pos(p) \ (PosI ∪ PosJ) was not substituted, neither
in p′ nor in p′′, and therefore corresponds to the same symbol from
A ⊎ {%} in all p, p′, and p′′.

• Any position in PosJ ∪ PosI corresponds to some variable %i in p′, or
to some variable %j in p′′, or both.

Thus, patterns p′ and p′′ are conflicting, because all the three conditions in
the definition are satisfied: the patterns are distinct, they have the same
length and at every position, the corresponding symbols are either identical
or at least one of them is the variable symbol. This proves the forward
implication.

To prove the backward implication, consider a notation language LT con-
taining two conflicting patterns p′ 6= p′′. We can build a pattern p that can
have both p′ and p′′ as top-level patterns, as follows:

p
△
= p′[p′′(k)/%ik ]k∈V ar′(p′,p′′)

where p′(k) = %ik ; there must be such an ik ∈ [1..|p′|] because k ∈ V ar′(p′, p′′),
so p′(k) = %.

That is, p is built by substituting in p′ all variables that do not exist in
p′′ at the same position k by exactly the symbol that p′′ has at that position,
p′′(k). It can be easily shown that the following equality also holds:

p = p′′[p′(k)/%jk
]k∈V ar′′(p′,p′′)

for some jk ∈ [1..|p′′|], by case reasoning:
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1. For any position k0 ∈ Eq(p′, p′′) we have

p(k0) = p′[p′′(k)/%ik ]k∈V ar′(p′,p′′)(k0) = p′(k0)

= p′′(k0) = p′′[p′(k)/%jk
]k∈V ar′′(p′,p′′)(k0)

where the second and last equality hold because k0 6∈ V ar′(p′, p′′) ∪
V ar′′(p′, p′′).

2. For any position k1 ∈ V ar′(p′, p′′) we have

p(k1) = p′[p′′(k)/%ik ]k∈V ar′(p′,p′′)(k1) = p′′(k1)

= p′′[p′(k)/%jk
]k∈V ar′′(p′,p′′)(k1)

where the last equality holds because k1 6∈ V ar′′(p′, p′′)

3. For any position k2 ∈ V ar′′(p′, p′′) we have

p(k2) = p′[p′′(k)/%ik ]k∈V ar′(p′,p′′)(k2) = p′(k2)

= p′′[p′(k)/%jk
]k∈V ar′′(p′,p′′)(k2)

where the second equality holds because k2 6∈ V ar′(p′, p′′)

Therefore, by choosing for example the set of base symbols B = A, which
allows to substitute variables in p′ with symbols in p′′ and vice-versa, the
pattern p shows that the notation language LT is B-ambiguous. Hence, LT

is base-ambiguous. �

Proof of Proposition 2

Proof. As the language is B-ambiguous, there are two patterns p′ 6= p′′ both
instantiated to p using base values b′i, b

′′
j ∈ B:

p = p′[b′i/%i]i∈I⊂[1..|p′|] = p′′[b′′j /%j]j∈J⊂[1..|p′′|]

By virtue of Proposition 1, p′ and p′′ are conflicting. The sets V ar′(p′, p′′) and
V ar′′(p′, p′′) cannot be both empty—otherwise it would imply that p′ = p′′.
If, for instance, the first is non-empty (the other case is symmetric), then
there is a position k ∈ V ar′(p′, p′′), which means that (∃ik ∈ I) such that
p′(k) = %ik ∧ p′′(k) 6= %. So

bik = p′[b′i/%i]i∈I⊂[1..|p′|](k) = p′′[b′′j /%j]j∈J⊂[1..|p′′|](k) = p′′(k)

But the word p′′ ∈ LT ⊂ (A ⊎ {%})∗, and we saw that p′′(k) 6= %, so
p′′(k) ∈ A ∩ B. �
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